

PROTEUS
Scalable online machine learning for predictive analytics and real-time

interactive visualization

687691

D4.5 Scalable Online Algorithms in

Flink
Lead Author: Jeyhun Karimov

With contributions from: Wenjuan Wang,

Waqas Jamil, Ngoc Canh Duong,

Bonaventura Del Monte, Alireza Rezaei Mahdiraji
Reviewer: Hamid Bouchachia

Deliverable nature: Demonstrator (D)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date: 31.08.2018

Actual delivery date: 19.08.2018

Version: 1.0

Total number of pages: 44

Keywords: SOLMA, scalable machine learning

PROTEUS Deliverable D4.5

687691 Page 2 of 44

Abstract

Online machine learning algorithms play crucial role in modern industries, especially for ArcelorMittal use-

case of PROTEUS. In this case, the use-case requires a short-time response from the machine learning

model, as waiting for offline machine learning results might have severe negative impacts. For example, if

the flatness of steel is not predicted on time and if the flatness quality is low as a result, the steel is not sent to

the customer. The goal of this deliverable is to provide a set of online scalable algorithms and their

implementation in scalable dataflow engine Apache Flink. The main contribution of this deliverable is

twofold. Firstly, we provide an abstraction, SOLMA, on top of Apache Flink. This layer is designed to

implement machine learning algorithms in an easy way. We adopt several approaches from state-of-the-art

machine learning libraries, such as python scikit, and implement them on top of Apache Flink. Secondly, we

develop a set of online machine learning algorithms with SOLMA abstraction.

Deliverable D4.5 PROTEUS

687691 Page 3 of 44

Executive summary

The goal of this deliverable is to provide a library with a set of online machine learning algorithms

implemented on top of distributed dataflow engine Apache Flink. We call the library SOLMA, Scalable

Online Machine Learning Algorithms. The provided algorithms are general purpose algorithms to be used in

distributed machine learning context and they are not tightly coupled with PROTEUS use-case. However,

SOLMA also possesses PROTEUS use-cases related algorithms.

SOLMA aims to extend FlinkML’s online machine learning capabilities and it is built with the same

intuition behind this latter, which is providing scalable ML algorithms, an intuitive API, and tools that help

minimize glue code in end-to-end ML systems. As a matter of fact, ML systems developers are usually

concerned about the huge quantity of glue code needed in building end-to-end ML systems. SOLMA

abstraction lets end users build, test and deploy their own ML pipelines and seamlessly chain them with any

kind of hybrid ETL pipeline (namely streaming and historical data) defined using PROTEUS and/or Apache

Flink API.

Although FlinkML provides a nice set of traditional machine learning algorithms on top of Flink Batch API,

there is no support for data streams. In the context of stream data processing, also in PROTEUS use-case,

data analytics must satisfy new requirements as stated in [9]:

• Low memory usage

• Low processing time

• Items can be processed at most once

• Prediction should be possible at any stage

Here, online learning plays a prominent role; the way machine learning models are trained slightly changes,

indeed prequential evaluation and holdout are the two mainstream methods known in literature.

Therefore, FlinkML should be extended such that the algorithms described in deliverables D4.1-4.4 can be

expressed using pipeline abstractions (i.e., Estimator, Transformer, and Predictor pattern) and executed on

data streams.

We also provide information about a set of algorithms implemented on top of SOLMA abstraction.

PROTEUS Deliverable D4.5

687691 Page 4 of 44

Document Information

IST Project

Number

687691 Acronym PROTEUS

Full Title Scalable online machine learning for predictive analytics and real-time

interactive visualization

Project URL https://www.proteus-bigdata.com/

EU Project Officer Martina EYDNER

Deliverable Number D4.5 Title Scalable online machine learning for

predictive analytics and real-time

interactive visualization

Work Package Number WP4 Title Scalable Online Machine Learning

Date of Delivery Contractual M33 Actual M33

Status version 1.0 final x

Nature report □ demonstrator x other □

Dissemination level public x restricted □

Authors (Partner) Jeyhun Karimov (DFKI), Bonaventure Del Monte (DFKI), Alireza Rezaei Mahdiraji
(DFKI)

Responsible Author
Name Jeyhun Karimov E-mail jeyhun.karimov@dfki.de

Partner DFKI Phone 01739091885

Abstract

(for dissemination)

Online machine learning algorithms play crucial role in modern industries,

especially for ArcelorMittal use-case of PROTEUS. In this case, the use-case

requires a short-time response from the machine learning model, as waiting for

offline machine learning results might have severe negative impacts. For

example, if the flatness of steel is not predicted on time and if the flatness

quality is low as a result, the steel is not sent to the customer. The goal of this

deliverable is to provide a set of online scalable algorithms and their

implementation in scalable dataflow engine Apache Flink. The main

contribution of this deliverable is twofold. Firstly, we provide an abstraction,

SOLMA, on top of Apache Flink. This layer is designed to implement machine

learning algorithms in an easy way. We adopt several approaches from state-of-

the-art machine learning libraries, such as python scikit, and implement them on

top of Apache Flink. Secondly, we develop a set of online machine learning

algorithms with SOLMA abstraction.

Keywords SOLMA, scalable machine learning

Version Log

Issue Date Rev. No. Author Change

20.07.2018 0.1 Javier De Matias

Bejarano

Contribution of algorithms from

TreeLogic

17.07.2018 0.2 Wenjuan Wang Discussing contribution of BU

24.07.2018 0.3 Wenjuan Wang Discussing contribution of BU

26.07.2018 0.4 Wenjuan Wang Discussing contribution of BU

30.07.2018 0.5 Wenjuan Wang First contribution of algorithms

06.08.2018 0.6 Wenjuan Wang Address DFKI’s comments

10.08.2018 0.7 Wenjuan Wang Address DFKI’s comments

24.08.2018 0.9 Jeyhun Karimov Address BU’s comments

29.08.2018 1.0 Jeyhun Karimov Final revision

Deliverable D4.5 PROTEUS

687691 Page 5 of 44

PROTEUS Deliverable D4.5

687691 Page 6 of 44

Table of Contents

Executive summary ... 3

Document Information .. 4

Table of Contents .. 6

List of listings ... 7

List of Figures .. 8

Abbreviations .. 9

1 Introduction ... 10

2 SOLMA Pipeline ... 11

2.1 State-of-the-art libraries... 11

2.2 SOLMA Abstraction .. 17

3 SOLMA Library ... 21

3.1 SAX .. 21
3.1.1 Description ... 21
3.1.2 Implementation .. 22
3.1.3 Example code snippets ... 23

3.2 LASSO .. 24
3.2.1 Description ... 24
3.2.2 Implementation .. 25
3.2.3 Example code snippets ... 27

3.3 Regression based ML algorithms .. 29
3.3.1 Notations .. 29
3.3.2 Online Ridge Regression (ORR) .. 29
3.3.3 Aggregation Algorithm for Regression (AAR) ... 29
3.3.4 Online Shrinkage via Limit Of Gibbs sampling (OSLOG) ... 30
3.3.5 Competitive Online Iterative Ridge Regression (COIRR) .. 30
3.3.6 Competitive Online Normalised Least Mean Squares Regression (TNLMS) .. 31

3.4 Classification based ML algorithms ... 31
3.4.1 Online SVM ... 31
3.4.2 Online Bilevel Stochastic Gradient for Support Vector Machine (OBSG_SVM) ... 33
3.4.3 Passive-Aggressive Learning (PA) ... 35
3.4.4 Online WAPA .. 36

3.5 Sampling algorithms .. 38
3.5.1 Simple reservoir sampling .. 38
3.5.2 Adaptive reservoir sampling .. 39
3.5.3 Weighted reservoir sampling ... 39

3.6 Moments ... 40

3.7 Frequent Directions ... 40

4 Conclusions .. 42

References .. 43

Deliverable D4.5 PROTEUS

687691 Page 7 of 44

List of listings

Listing 1. Pipeline analysis with FlinkML ... 12
Listing 2. Matrix class in FlinkML .. 13
Listing 3. Vector class in FlinkML .. 14
Listing 4. Estimator class in FlinkML .. 15
Listing 5. TransformOperation and PredictOperation classes in FlinkML .. 17
Listing 6. StreamTransformer class in SOLMA abstraction. ... 18
Listing 7. StreamEstimator class in SOLMA abstraction. ... 19
Listing 8. StreamPredictor class in SOLMA abstraction. ... 20
Listing 13. OSVM Prequential training ... 33
Listing 14. OSVM algorithm ... 33
Listing 9. Simple reservoir sampling class... 38
Listing 10 Main transformation function for simple reservoir sampling ... 39
Listing 11. Frequent Directions class ... 41
Listing 12. Main transformation for Frequent Directions. ... 41

PROTEUS Deliverable D4.5

687691 Page 8 of 44

List of Figures

Figure 1. SAX data pipeline. .. 22
Figure 2. Figure 2: SAX class diagram .. 23
Figure 3. SAXDictionary class diagram .. 23
Figure 4. Flink – PS interaction ... 25
Figure 5. Worker – PS interaction (training procedure) ... 25
Figure 6. Worker – PS interaction (prediction procedure) ... 26
Figure 7. Lasso data pipeline.. 26
Figure 8. Lasso UML diagram (I) .. 26
Figure 9. Lasso UML diagram (II) ... 27

file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265506
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265507
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265508
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265509
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265510
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265511
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265512
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265513
file://///Users/jeka01/Downloads/D4.5%20(1).docx%23_Toc523265514

Deliverable D4.5 PROTEUS

687691 Page 9 of 44

Abbreviations

SOLMA: Scalable Online Machine Learning Algorihtms

ML: Machine Learning

API: Application Programming Interface

ETL: Extract Transform Load

BLAS: Basic Linear Algebra Subprograms

PS: Parameter Server

SVD: Singular Value Decomposition

SVM: Support Vector Machine

OSVM: One-class Support Vector Machine

PROTEUS Deliverable D4.5

687691 Page 10 of 44

1 Introduction

One of the main targets of machine learning is to extract knowledge from data with the help of statistics,

probability and optimization techniques. Machine learning has a wide usage area from everyday tasks (ex:

product recommendations) to spam filtering and self-driving cars. In the ‘age of big data’ performing

machine learning tasks is challenging as the size of data sets grow fast. In PROTEUS, we aim the next

generation machine learning techniques, which are both distributed and online to provide real-time response

to customers instead of training models periodically overnight.

The goal of this deliverable is to provide a library with a set of online machine learning algorithms

implemented on top of distributed dataflow engine Apache Flink. We call the library SOLMA, Scalable

Online Machine Learning Algorithms. The provided algorithms are general purpose algorithms to be used in

distributed machine learning context and they are not tightly coupled with PROTEUS use-case. However,

SOLMA also possesses PROTEUS use-cases related algorithms.

The main problem is that implementing machine learning algorithms of SOLMA library is cumbersome as

those algorithms share common stages. As a result, most widely accepted libraries such as python scikit-

learn introduce interfaces Estimator, Transformer, and Predictor to easily develop machine ML pipelines.

Our solution is to build a common layer on top of Apache Flink like python scikit-learn library does for

machine learning algorithms. The Estimator interface performs the actual training of the model. As evident

by the naming, classes that implement Transformer are transform operations like scaling the input and

Predictor implementations are learning algorithms, such as Multiple Linear Regression. We provide the

details of our implementations of SOLMA abstraction in Section 2. First, we analyze existing state-of-the-art

techniques in this area and provide our abstraction to be used on top of Apache Flink.

We use SOLMA abstraction to implement a set of algorithms on top of Apache Flink. We provide theoretical

information about the algorithms, their distributed working semantics, their implementation on top of

SOLMA abstraction and example code snippets. As this library is open source [12], machine learning,

distributed systems, or language development communities can benefit and extend the library.

We provide high level description of algorithms. Firstly, we describe LASSO and SAX, which are the most

relevant ML algorithms to PROTEUS. We elaborate the main design and implementation decisions and

provide examples. Then, we categorize remaining algorithms into regression, classification and other

categories and provide a high level information.

The deliverable is organized as follows. In Section 2, we provide SOLMA abstraction. We show state-of-the-
art library interfaces and based on that we build our solution for online environment. In Section 3, we

provide list of ML algorithms in SOLMA library. We show their parallelisation semantics and

implementation details on top of SOLMA abstraction. We conclude in Section 4.

Deliverable D4.5 PROTEUS

687691 Page 11 of 44

2 SOLMA Pipeline

In this section, we present the SOLMA abstraction, built on PROTEUS engine, an overhauled Apache Flink

version supporting hybrid computation between data-in-motion (data streams) and data-in-rest (historical

batch datasets).

SOLMA aims to extend FlinkML’s online machine learning capabilities and it is built with the same

intuition behind this latter, which is providing scalable ML algorithms, an intuitive API, and tools that help

minimize glue code in end-to-end ML systems. As a matter of fact, ML systems developers are usually

concerned about the huge quantity of glue code needed in building end-to-end ML systems [1]. SOLMA

abstraction lets end users build, test and deploy their own ML pipelines and seamlessly chain them with any

kind of hybrid ETL pipeline (namely streaming and historical data) defined using PROTEUS and/or Apache

Flink API.

2.1 State-of-the-art libraries

As described in FlinkML programming guide, pipelines in the ML context can be thought of as chains of

operations that have some data as input, perform a set of transformations to that data, and then output the

transformed data, either to be used as the input (features) of a predictor function, such as a learning model, or

just output the transformed data themselves, to be used in some other task. The end learner can of course be a

part of the pipeline as well. ML pipelines can often be complicated sets of operations and can become

sources of errors for end-to-end learning systems.

The purpose of ML pipelines is then to create a framework that can be used to manage the complexity

introduced by these chains of operations. Pipelines should make it easy for developers to define chained

transformations that can be applied to the training data, in order to create the end features that will be used to

train a learning model, and then perform the same set of transformations just as easily to unlabelled (test)

data. Pipelines should also simplify cross-validation and model selection on these chains of operations.

Finally, by ensuring that the consecutive links in the pipeline chain “fit together” we also avoid costly type

errors. Since each step in a pipeline can be a computationally-heavy operation, we want to avoid running a

pipelined job, unless we are sure that all the input/output pairs in a pipeline “fit”. FlinkML follows an API

inspired by sklearn [13], which means that we have Estimator, Transformer, and Predictor interfaces. For an

in-depth look at the design of the sklearn API the interested reader is referred [10].

In short, the Estimator is the base class from which Transformer and Predictor inherit. Estimator defines a

fit method, and Transformer also defines a transform method and Predictor defines a predict method.

The fit method of the Estimator performs the actual training of the model, for example finding the correct

weights in a linear regression task, or the mean and standard deviation of the data in a feature scaler. As

evident by the naming, classes that implement Transformer are transform operations like scaling the input

and Predictor implementations are learning algorithms, such as Multiple Linear Regression. Pipelines can be

created by chaining together one or more Transformers, and the final link in a pipeline can be a Predictor or

another Transformer. Pipelines that end with Predictor cannot be chained any further.

FlinkML also supports optimized routines for handling sparse and dense matrix as well as BLAS (Basic

Linear Algebra Subprograms)-compliant operations. Support for distributed large matrix is also guaranteed.

Currently FlinkML supports the following algorithms:

Supervised Learning

• SVM using Communication efficient distributed dual coordinate ascent (CoCoA)

• Multiple linear regression

• Optimization Framework

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/svm.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/multiple_linear_regression.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/optimization.html

PROTEUS Deliverable D4.5

687691 Page 12 of 44

Unsupervised Learning

• k-Nearest neighbors join

Data Preprocessing

• Polynomial Features

• Standard Scaler

• MinMax Scaler

Recommendation

• Alternating Least Squares (ALS)

Outlier selection

• Stochastic Outlier Selection (SOS)

Utilities

• Distance Metrics

• Cross Validation

Listing 1 shows how easy it is to set up an analysis pipeline with FlinkML.

val trainingData : DataSet[LabeledVector] = ...

val testingData : DataSet[Vector] = ...

val scaler = StandardScaler()

val polyFeatures = PolynomialFeatures().setDegree(3)

val mlr = MultipleLinearRegression()

// Construct pipeline of standard scaler, polynomial features and multiple

linear regression

val pipeline = scaler.chainTransformer(polyFeatures).chainPredictor(mlr)

// Train pipeline

pipeline.fit(trainingData)

// Calculate predictions

val predictions : DataSet[LabeledVector] = pipeline.predict(testingData)

Listing 1. Pipeline analysis with FlinkML

As explained above, FlinkML library consists mainly of a matrix and vector abstraction, three building

blocks for algorithms (e.g. Estimator, Transformer and Predictor) and some ready to use batch machine

learning algorithms.

The matrix and vector base classes are defined in Listing 2 and Listing 3.

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/knn.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/polynomial_features.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/standard_scaler.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/min_max_scaler.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/als.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/sos.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/distance_metrics.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/ml/cross_validation.html

Deliverable D4.5 PROTEUS

687691 Page 13 of 44

/** Base trait for a matrix representation

 *

 */

trait Matrix {

 /** Number of rows

 *

 * @return number of rows in the matrix

 */

 def numRows: Int

 /** Number of columns

 *

 * @return number of columns in the matrix

 */

 def numCols : Int

 /** Ele ment wise access function

 *

 * @param row row index

 * @param col column index

 * @return matrix entry at (row, col)

 */

 def apply(row : Int, col : Int) : Double

 /** Element wise update function

 *

 * @param row row index

 * @param col column index

 * @param value value to set at (row, col)

 */

 def update(row : Int, col : Int, value : Double) : Unit

 /** Copies the matrix instance

 *

 * @return Copy of itself

 */

 def copy : Matrix

 def equalsMatrix(matrix : Matrix) : Boolean = {

 if(numRows == matrix.numRows && numCols == matrix.numCols) {

 val coordinates = for(row <- 0 until numRows;

 col <- 0 until numCols)

 yield (row, col)

 coordinates forall {

 case(row, col) => this.apply(row, col) == matrix(row, col)}

 } else {

 false

 }

 }

}

Listing 2. Matrix class in FlinkML

PROTEUS Deliverable D4.5

687691 Page 14 of 44

trait Vector extends Serializable {

 /** Number of elements in a vector

 *

 * @return The number of elements of the vector

 */

def size : Int

 /** Element wise access function

 *

 * @param index index of the accessed element

 * @return value of the associated with the index

 */

 def apply(index : Int) : Double

 /** Updates the element at the given index with the provided value

 *

 * @param index The index of the elem ent to be updated

 * @param value The new value

 */

 def update(index : Int, value : Double) : Unit

 /** Copies the vector instance

 *

 * @return Copy of the vector instance

 */

 def copy : Vector

 /** Returns the dot product of the recipient and the argument

 *

 * @param other a Vector

 * @return a scalar double of dot product

 */

 def dot(other : Vector) : Double

 /** Returns the outer product of the recipient and the argument

 *

 * @param other a Vector

 * @return a matrix

 */

 def outer(other : Vector) : Matrix

 /** Magnitude of a vector

 *

 * @return The length of the vector

 */

 def magnitude : Double

 def equalsVector(vector : Vector) : Boolean = {

 if(size == vector.size) {

 (0 until size) forall { idx =>

 this(idx) == vector(idx)

 }

 } else {

 false

 }

 }

}

Listing 3. Vector class in FlinkML

Deliverable D4.5 PROTEUS

687691 Page 15 of 44

Specialized DenseMatrix and SparseMatrix as well as DenseVector and SparseVector are available with

extended operations support (e.g. BLAS). All those matrix operations are executed by using Scala Breeze

library, a Scala numerical processing library1.

The signature of an Estimator is shown in Listing 4.

trait Estimator[Self] extends WithParameters with Serializable {

 that : Self =>

 def fit[Training](

 training : DataSet[Training],

 fitParameters : ParameterMap = ParameterMap. Empty)

 (implicit fitOperation : FitOperation[Self, Training]) : Unit = {

 FlinkMLTools.registerFlinkMLTypes(training.getExecutionEnvironment)

 fitOperation.fit(this, fitParameters, training)

 }

}

/** Type class for the fit operation of an [[Estimator]].

 *

 * The [[FitOperation]] contains a self type parameter so that the Scala

compiler looks into

 * the companion object of this class to find implicit values.

 *

 * @tparam Self Type of the [[Estimator]] subclass for which the

[[FitOperation]] is defined

 * @tparam Training Type of the training data

 */

trait FitOperation[Self, Training]{

 def fit(instance : Self, fitParameters : ParameterMap, input :

DataSet[Training]) : Unit

}

Listing 4. Estimator class in FlinkML

Within the fit operation, a pipeline component is trained with respect to the given training data. The

algorithm is, however, not implemented by overriding the fit method but by providing an implementation of

a corresponding FitOperation for the correct type. Looking at the definition of the fit method in Estimator,

which is the parent class of Transformer, reveals why this is the case.

We see that the fit method is called with an input data set of type Training, an optional parameter list and in

the second parameter list with an implicit parameter of type FitOperation. Within the body of the function,

first some machine learning types are registered and then the fit method of the FitOperation parameter is

called. The instance gives itself, the parameter map and the training data set as parameters to the method.

Thus, all the program logic takes place within the FitOperation.

The FitOperation has two type parameters. The first defines the pipeline operator type for which

this FitOperation shall work and the second type parameter defines the type of the data set elements.

The same happens for Transformer and Predictor traits: they respectively have a TransformerOperation and a

PredictorOperation in their companion objects. The signatures of these operations are shown in Listing 5.

1 https://github.com/scalanlp/breeze

PROTEUS Deliverable D4.5

687691 Page 16 of 44

trait TransformOperation[Instance, Model, Input, Output] extends Serializable{

 /** Retrieves the model of the [[Transformer]] for which this operation has

been defined.

 *

 * @param instance

 * @param transformParemters

 * @return

 */

 def getModel(instance : Instance, transformParemters : ParameterMap) :

DataSet[Model]

 /** Transforms a single element with respect to the model associated with the

respective [[Transformer]]

 *

 * @param element

 * @param model

 * @return

 */

 def transform(element : Input, model : Model) : Output

}

/** Type class for predict operation. It takes an element and the model and then

computes the prediction value for this element.

 *

 * It is sufficient for a [[Predictor]] to only implement this trait to support

the evaluate and predict method.

 *

 * @tparam Instance The concrete type of the [[Predictor]] that we will use for

predictions

 * @tparam Model The representation of the p redictive model for the algorithm,

for example a Vector of weights

 * @tparam Testing The type of the example that we will use to make the

predictions (input)

 * @tparam Prediction The type of the label that the prediction operation will

produce (output)

 *

 */

trait PredictOperation[Instance, Model, Testing, Prediction] extends

Serializable{

 /** Defines how to retrieve the model of the type for which this operation was

defined

 *

 * @param instance The Predictor instance that we will use to make the

predictions

 * @param predictParameters The parameters for the prediction

 * @return A DataSet with the model representation as its only element

 */

 def getModel(instance : Instance, predictParameters : ParameterMap) :

DataSet[Model]

 /** Calculates the prediction for a single element given the model of the

[[Predictor]].

 *

 * @param value The unlabeled example on which we make the prediction

 * @param model The mod el representation of the prediciton algorithm

 * @return A label for the provided example of type [[Prediction]]

 */

 def predict(value : Testing, model : Model) :

 Prediction

}

Deliverable D4.5 PROTEUS

687691 Page 17 of 44

Listing 5. TransformOperation and PredictOperation classes in FlinkML

2.2 SOLMA Abstraction

Although FlinkML provides a nice set of traditional machine learning algorithms on top of Flink Batch API,

there is no support for data streams. In the context of stream data processing, also in PROTEUS use-case,

data analytics must satisfy new requirements as stated in [9]:

• Low memory usage

• Low processing time

• Items can be processed at most once

• Prediction should be possible at any stage

Here, online learning plays a prominent role; the way machine learning models are trained slightly changes,

indeed prequential evaluation and holdout are the two mainstream methods known in literature [8].

Therefore, FlinkML should be extended such that the algorithms described in deliverables D4.1-4.4 can be

expressed using pipeline abstractions (i.e., Estimator, Transformer, and Predictor pattern) and executed on

data streams.

Examples of Transformers are:

• Reservoir samplers (transform: transform a data stream in a windowed stream by sampling the

former and assigning items to windows according to their timestamps)

• Online PCA (fit: incrementally learns the principal features; transform: applies the PCA to input

stream)

• Random Projection (fit: determine a sketch of the stream; transform: reduce input dimensions)

• SVD (usage in previous deliverable is unclear, I can guess but need confirmation from BU)

Example of Estimators:

• Heavy hitters: (fit: figures out the most frequent items in the stream through FD algorithm)

• Moments: (fit: calculates the desired moment)

Although no predictor has already been discussed in past deliverables yet, an example could be:

• VHT (fit: prequential evaluation, predict: only predict)

All the algorithms listed above will have some hyper-parameters that the end-user is able to tweak.

Moreover, they could work per-window or per-item and for those that need to update a model, they will be

connected to the parameter server developed in WP3. By taking advantage of the modularity of FlinkML, we

can write the actual ML operation directly in Scala.

Listing 6, Listing 7, and Listing 8 show the main interfaces of SOLMA abstraction. StreamEstimator

contains fitting operation which fits the estimator to the given input data. StreamTransformer extends from

StreamEstimator having transform operations. It can also chain together several transformations or

predictions. StreamPretictor also inherits from StreamEstimator. A user should provide predicting function

and the rest is translated to Apache Flink DataStream API automatically.

PROTEUS Deliverable D4.5

687691 Page 18 of 44

trait StreamTransformer[Self <: StreamTransformer[Self]] extends

StreamEstimator[Self] {

 that : Self =>

 def transform[Input, Output](

 input : DataStream[Input],

 transformParameters : ParameterMap = ParameterMap. Empty)

 (implicit transformOperation : TransformDataStreamOperation[Self, Input,

Output])

 : DataStream[Output] = {

 FlinkSolmaUtils.registerFlinkMLTypes(input.executionEnvironment)

 transformOperation.transformDataStream(that, transformParameters, input)

 }

 /** Chains two [[StreamTransformer]] to form a [[ChainedStreamTransformer]].

 *

 * @param transformer Right side transformer of the resulting pipeline

 * @tparam T Type of the [[StreamTransformer]]

 * @return

 */

 def chainTransformer[T <: StreamTransformer[T]](transformer : T)

 : ChainedStreamTransformer[Self, T] = {

 new ChainedStreamTransformer(this, transformer)

 }

 /** Chains a [[StreamPredictor]] with a [[StreamPredictor]] to

 * form a [[ChainedStreamPredictor]].

 *

 * @param predictor Trailing [[StreamPredictor]] of the resulting pipeline

 * @tparam P Type of the [[StreamPredictor]]

 * @return

 */

 def chainPredictor[P <: StreamPredictor[P]](predictor : P) :

ChainedStreamPredictor[Self, P] = {

 ChainedStreamPredictor(this, predictor)

 }

}

Listing 6. StreamTransformer class in SOLMA abstraction.

Deliverable D4.5 PROTEUS

687691 Page 19 of 44

trait StreamEstimator[Self] extends WithParameters with Serializable {

 that : Self =>

 def setPartitioning[Training](fun : (DataStream[Any]) => KeyedStream[(Any,

Long), Long]) : Self = {

 parameters.add(StreamEstimator. PartitioningOperation, fun)

 this

 }

 /** Fits the estimator to the given input data. The fitting logic is contained

in the [[StreamFitOperation]]. The computed state will be stored in the

implementing class.

 *

 * @param training Training data stream

 * @param fitParameters Additional parameters for the [[StreamFitOper ation]]

 * @param fitOperation [[StreamFitOperation]] which encapsulates the

algorithm logic

 * @tparam Training Type of the training data

 * @return

 */

 def train[Training](

 training : DataStream[Training],

 fitParameters : ParameterMap = ParameterMap. Empty)(implicit

 fitOperation : StreamFitOperation[Self, Training]) : Unit = {

 FlinkSolmaUtils.registerFlinkMLTypes(training.executionEnvironment)

 fitOperation.fit(this, fitParameters, training)

 }

}

Listing 7. StreamEstimator class in SOLMA abstraction.

PROTEUS Deliverable D4.5

687691 Page 20 of 44

trait StreamPredictor[Self] extends StreamEstimator[Self] {

 that : Self =>

 def predict[Testing, Prediction](

 testing : DataStream[Testing],

 predictParameters : ParameterMap = ParameterMap. Empty)(implicit

 predictor : PredictDataStreamOperation[Self, Testing, Prediction])

 : DataStream[Prediction] = {

 FlinkSolmaUtils.registerFlinkMLTypes(testing.getExecutionEnvironment)

 predictor.predictDataStream(this, predictParameters, testing)

 }

}

object StreamPredictor {

 implicit def defaultPredictDataStreamOperation[

 Instance <: StreamEstimator[Instance],

 Model,

 Testing,

 PredictionValue](

 implicit predictOperation : StreamPredictOperation[Instance, Model,

Testing, PredictionValue],

 testingTypeInformation : TypeInformation[Testing],

 predictionValueTypeInformation : TypeInformation[PredictionValue])

 : PredictDataStreamOperation[Instance, Testing, (Testing, PredictionValue)]

= {

 new PredictDataStreamOperation[Instance, Testing, (Testing,

PredictionValue)] {

 override def predictDataStream(

 instance : Instance,

 predictParameters : ParameterMap,

 input : DataStream[Testing])

 : DataStream[(Testing, PredictionValue)] = {

 val resultingParameters = instance.parameters ++ predictParameters

 val model = predictOperation.getModel(instance, resultingParameters)

 implicit val resultTypeInformation = createTypeInformation[(Testing,

PredictionValue)]

 input.map(element => {

 (element, predictOperation.predict(element, model))

 })

 }

 }

 }

}

Listing 8. StreamPredictor class in SOLMA abstraction.

Deliverable D4.5 PROTEUS

687691 Page 21 of 44

3 SOLMA Library

In this section, we provide a set of algorithms implemented using SOLMA abstraction. We divide each

algorithm or set of algorithms into three sections: 1) description, where we explain high level details of the

algorithm, 2) implementation, where we describe how the algorithm was implemented using SOLMA

abstractions, and 3) examples, where we provide some example code snippets.

First, we provide SAX and LASSO, which are more related to PROTEUS use-case, then we elaborate on

other set of machine learning algorithms in SOLMA library.

3.1 SAX

3.1.1 Description

SAX-SVM is a method proposed by P. Senin and S. Malinchick. SAX-VSM is based on two well-known

techniques[14]. The first technique is Symbolic Aggregate approXimation (SAX), which is a high-level

symbolic representation of time series. The second technique is the classic Vector Space Model (VSM)

based on tf izdf weighting scheme.

By using SAX, the algorithm transforms real-valued time series of a single input class into a combined

collection of SAX words, which is called “bag of words”. Next, by using tf izdf weighting, the algorithm

transforms these collections (one collection for each of the input classes) into class-characteristic weight

vectors, which, in turn, are used in classification built upon Cosine similarity.

Symbolic Aggregate approXimation (SAX). Symbolic representation of time series, once

introduced, has attracted much attention by enabling the application of numerous string-processing

algorithms, bioinformatics tools, and text mining techniques to time series. The method provides a

significant reduction of the time series dimensionality and a low-bounding to Euclidean distance

metrics, which guarantees no false dismissal. These properties are often leveraged by other

techniques that embed SAX representation for indexing and approximation. Configured by two

parameters, a desired word size w and an alphabet size α, SAX produces a symbolic approximation

of a time series T of a length n by compressing it into a string of the length w (usually w << n),

whose letters are taken from the alphabet α. At the first step of the algorithm, T is z-normalized (to

unit of standard deviation). At the second step, a dimensionality of the normalized time series is

reduced from n to w by obtaining its Piecewise Aggregate Approximation (PAA). For this, the

normalized time series is divided into w equal-sized segments and mean values for points within

each segment are computed. The sequence of these values forms PAA approximation of T. Finally,

each of w PAA coefficients is converted into a letter of an alphabet α using the lookup table which

defines a set of breakpoints that divide the normalized time series values distribution space into α

equal-sized regions (as in the original SAX work, it is assumed Gaussian distribution).

Following its introduction, SAX was shown to be an efficient tool for solving problems of finding

time series motifs and discords. The authors employed a sliding window-based subsequence

extraction technique and augmented data structures in order to build SAX words “vocabularies”. By

analyzing words frequencies, they were able to capture frequent and rare SAX words representing

motif and discord subsequences. The same technique, based on the combination of sliding window

and SAX, was used in numerous works, most notably in Shapelet and BOP-based classifiers. SAX-

SVM also use this sliding window technique to convert a time series T of a length n into the set of

m SAX words, where m = (n − l) +1 and ls is the sliding window length. By sliding a window of

length ls across time series T, extracting overlapping subsequences, converting them to SAX words,

and placing these words into an unordered collection, it is obtained the bag of words representation

of the original time series T.

PROTEUS Deliverable D4.5

687691 Page 22 of 44

Vector Space Model adaptation. SAX-SVM use the vector space model exactly as it is known in

Information Retrieval. Similarly, it is defined and used the following expressions: term - a single

SAX word, bag of words - an unordered collection of SAX words, corpus - a set of bags, and

weight matrix - a matrix defining weights of all words in a corpus. Given a training set, SAX-VSM

builds a bag of SAX words for each of the classes by processing each time series with a sliding

window and SAX. Bags are combined into a corpus, which is built as a term frequency matrix,

whose rows correspond to the set of all SAX words (terms) found in all classes, whereas each

column denotes a class of the training set. Each element of this matrix is an observed frequency of a

term in a class. Because SAX words extracted from the time series of one class are often not found

in others this matrix is usually sparse.

Next, SAX-VSM applies tf izdf weighting scheme for each element of this matrix to transform a

frequency value into a weight coefficient. The tf izdf weight for a term t is defined as a product of

two factors: term frequency (tf) and inverse document frequency (idf).

Once all frequency values are computed, term frequency matrix becomes the term weight matrix,

whose columns used as class’ term weight vectors that facilitate the classification using Cosine

similarity.

3.1.2 Implementation

As it is expected from PROTEUS project implementations, Apache Flink framework has been the base of all

the proposed scalable online machine learning algorithms. To process streaming data is one of the main

requirements to this kind of algorithms. Apache Flink is conceived for it and make available mechanisms to

parallelise this kind of jobs. SAX has been implemented as a streaming transformation pipeline as it is shown

in Figure 1. The data pipeline input is a stream of sensor measurements of one of the variables of the

problem and the output will be a stream of SAX results. A SAX result object contains:

• coilId: Coil identifier Error! Reference source not found.

• varName: Name of the selected variable

• x1 and x2: Interval of X where is calculated this SAX result

• classId: Name of the calculated class between the predefined ones (normally with a capital letter: A,

B, C, ...)

• similarity: A measure of how this classId fits with the predefined classes.

The SAX pipeline has two important transformation operations:

• SAX: The SAX transform operation performs two operations for a given stream: PAA and SAX. For

the PAA algorithm, the stream is divided into windows of the user selected PAA size. On each

window, a Z-normalization operation is applied first. Then, we average the values of the window.

With the averaged values, the algorithm converts each value into a symbol of the alphabet. Several

symbols are grouped as to form a word of a user-selected size

• SAXDictionary: Calculates the predictions for all elements in the input data stream.

As it has been explained above, SAX algorithm is implemented as pipeline of transform operation with a

input data of sensor measurements. The first step, implemented by SAX class, is a pure transformation,

Figure 1. SAX data pipeline.

Deliverable D4.5 PROTEUS

687691 Page 23 of 44

therefore SAX class inherits from StreamTransformer and Estimator classes (Figure 2). These two classes

need implicit implementations. Concretely it has been necessary to implement the transform operation in the

class SAXStreamTransformOperation and estimation operation in the class SAXFitOperation.

Respect to SAXDictionary, it implements the predicition operation strictly speaking, therefore

SAXDictionary class inherits from StreamPredictor and Estimator classes (Figure 3). These two classes

need implicit implementations. In this case, it has been necessary to implement the predict operation in the

class SAXDictionaryPredictOperation and the estimation operation in the class

SAXDictionaryFitOperation.

3.1.3 Example code snippets

As it has been explained above, the signature of SAX class is:

class SAX extends StreamTransformer[SAX] with Estimator[SAX]{

...

}

SAX class inherits from StreamTransformer class and Estimator class. The transforming operation and the fit

operation are implemented in SAXStreamTransformOperation class and SAXFitOperation respectively.

The first one has a signature like this:

class SAXFitOperation[T] extends FitOperation[SAX, T]{

 override def fit(instance : SAX, fitParameters : ParameterMap, input :

DataSet[T]) : Unit = {

 [...]

 }

 }

and the second one like this other:

Figure 2. Figure 2: SAX class diagram

Figure 3. SAXDictionary class diagram

PROTEUS Deliverable D4.5

687691 Page 24 of 44

class SAXStreamTransformOperation[T <: Double]

 extends TransformDataStreamOperation[SAX, (T, Int), (String, Int)]{

 override def transformDataStream(instance : SAX,

 transformParameters : ParameterMap, input : DataStream[(T, Int)])

 : DataStream[(String, Int)] = {

 [...]

 }

 }

SAXDictionary class inherits from StreamPredictor class and Estimator class. The transforming operation

and the fit operation are implemented in SAXDictionaryPredictOperation class and

SAXDictionaryFitOperation respectively. The first one has a signature like this:

class SAXDictionaryPredictOperation[T <: String]

 extends PredictDataStreamOperation[SAXDictionary, (T, Int),

 SAXPrediction] {

 override def predictDataStream(

 instance : SAXDictionary,

 predictParameters : ParameterMap,

 input : DataStream[(T, Int)]) : DataStream[SAXPrediction] = {

 [...]

 }

 }

and the second one like this other:

class SAXDictionaryFitOperation[T] extends FitOperation[SAXDictionary, T]{

 override def fit(

 instance : SAXDictionary,

 fitParameters : ParameterMap,

 input : DataSet[T]) : Unit = {

 [...]

 }

}

3.2 LASSO

3.2.1 Description

The acronym “LASSO” stands for Least Absolute Shrinkage and Selection Operator. Lasso

regression is a type of linear regression that uses shrinkage. Shrinkage is where data values are

shrunk towards a central point, like the mean. The lasso procedure encourages simple, sparse

models (i.e. models with fewer parameters). This particular type of regression is well-suited for

models showing high levels of multicollinearity or when you want to automate certain parts of

model selection, like variable selection/parameter elimination.

Give a set of input measurements x1, x2 ... xp and an outcome measurement y, the lasso fits a linear

model

ŷ = b0 + b1 * x1+ b2 * x2 + ... bp * xp

Deliverable D4.5 PROTEUS

687691 Page 25 of 44

The criterion it uses is to minimize sum((y - ŷ)2) subject to sum[absolute value(bj)] <= s.

The first sum is taken over observations (cases) in the dataset. The bound "s" is a tuning parameter.

When "s" is large enough, the constraint has no effect and the solution is just the usual multiple

linear least squares regression of y on x1, x2 ... xp.

However, when for smaller values of s (s >= 0) the solutions are shrunken versions of the least

squares estimates. Often, some of the coefficients bj are zero. Choosing "s" is like choosing the

number of predictors to use in a regression model, and cross-validation is a good tool for estimating

the best value for "s".

3.2.2 Implementation

As it was defined in PROTEUS proposal, Apache Flink framework has been the base of SOLMA library and

therefore the tool which allow the implementation of a set of scalable online machine learning algorithms. To

process streaming data is one of the main requirements to this kind of algorithms. Apache Flink is conceived
for it and make available mechanisms to parallelise this kind of jobs. Unfortunately, it is not trivial to

parallelise online machine learning. If all workers (Task managers in Flink language) process in parallel

input data (to train the model or to make predictions) they need to “share” a unique updated model (or at

least most updated as it is possible). The parameter server (PS) is a tool to address these issues efficiently.

The overall intuition can be seen from Figure 4.

PS has been included in SOLMA implementation to accomplish this essential mission. The PS working is

quite simple. PS store the most updated version of the model. Workers will need the model in two kind of

procedures:

• Training procedure: As can be seen from Figure 5, the worker receives a labelled input data, make a

“pull” operation (in an asynchronous way), wait until PS response it, receive the shared model,

update it with the labelled input data and make a “push” operation to update the model in PS.

Figure 4. Flink – PS interaction

Figure 5. Worker – PS interaction

(training procedure)

PROTEUS Deliverable D4.5

687691 Page 26 of 44

• Prediction procedure: As can be seen from Figure 6, the worker receives a unlabelled input data,

make a “pull” operation (in an asynchronous way), wait until PS response it, receive the shared

model, make a prediction from the unlabelled data and requested model and produce an output with

the prediction.

As it was explained above, to process streaming data is one of the most important requirements to scalable

online machine learning algorithms. Apache Flink provides several abstractions to streaming processing. The

Figure 7 shows an abstraction of how Lasso implementation works. From a bird's eye view, Lasso algorithm

is implemented as transform operation with two kinds of input data, sensor measurements (from all the

sensors distributed along factory line) and flatness measurements (measured with a delay after finish coil

production) and an output data, predictions of coil flatness (before to know the real flatness value).

SOLMA provide us some abstractions for this kind of algorithms. A combination of classes

StreamTransformer and StreamPredictor define the behavior of this Lasso implementation. The UML

class diagram is as it is shown in Figure 8.

The inheritance from StreamTransformer class has implicit to implement stream transformation operation in

class LassoDFStreamTransformOperation. This class uses LassoParameterServer which it is the entry point

Figure 6. Worker – PS interaction (prediction

procedure)

Figure 7. Lasso data pipeline

Figure 8. Lasso UML diagram (I)

Deliverable D4.5 PROTEUS

687691 Page 27 of 44

to Parameter Server use. As it is explained in Figure 9, it is necessary two important classes for this,

LassoBasicAlgorithm, with the basic details of Lasso algorithm, and LassoWorkerLogic, where it is defined

how will be the interaction with Parameter Server.

3.2.3 Example code snippets

SOLMA provide us some abstractions for this kind of algorithm. A combination of classes

StreamTransformer and StreamPredictor define the behavior of this Lasso implementation. Our

implementation extends from these two classes which make easy the implementation of the expected

behavior:

class LassoDelayedFeedbacks extends StreamTransformer[LassoDelayedFeedbacks]

with StreamPredictor[LassoDelayedFeedbacks]

To extend StreamTransformer class it was necessary to implement a class where transformation operation

is defined. This class is LassoDFStreamTransformOperation and extends

TransformDataStreamOperation (defined in SOLMA). LassoDFStreamTransformOperation override

method transformDataStream:

override def transformDataStream(instance : LassoDelayedFeedbacks,

 transformParameters : ParameterMap,

 rawInput : DataStream[InputData]) :

 DataStream[OutputData] = {

 val workerLogic : LassoWorkerLogic = new LassoWorkerLogic(...)

 val output = LassoParameterServer.transformLasso(None)(rawInput, workerLogic)

 output

}

This method implements the tranformation logic and it is here where is defined the interaction with PS.That

is the entry point to PS working. It has been necessary to implement previously:

• The class LassoParameterServer, with the logic of stream transformation.

• The class LassoWorkerLogic, with the behavior of the workers respect to PS.

As it was explained above, PS provide a simple interface with three operations: pull, push and output. The

ParameterServerClient class has next signature:

trait ParameterServerClient[P, WorkerOut] extends Serializable {

 def pull(id : Int) : Unit

 def push(id : Int, deltaUpdate : P) : Unit

 def output(out : WorkerOut) : Unit

}

Figure 9. Lasso UML diagram (II)

PROTEUS Deliverable D4.5

687691 Page 28 of 44

and the class WorkerLogic has this other signature:

trait WorkerLogic[T, P, WorkerOut] extends Serializable {

 def onRecv(data : T, ps : ParameterServerClient[P, WorkerOut]) : Unit

 def onPullRecv(paramId : Int, paramValue : P, ps : ParameterServerClient[P,

WorkerOut]) : Unit

}

Therefore the LassoWorkerLogic class implements these two methods:

• Method onRecv: it implements the behavior of the algorithm when a new input data is received. The

input data can be a feature value (a value from one of the set of variables available to train the

model) and a target value (a value from the target variable). When a new input data is received

several operation could be performed:

 If there are labelled data it is necessary to request the updated model from PS (using “pull”

operation)

 If there are unlabelled data it is necessary to request the updated model from PS (using “pull”

operation)

 If there are values from input features, but it is not available the related target value, it is

necessary to store this input features values to label in the future (when target variable arrives).

In addition, this values from input features are store as “pending for predict”

 If there are values from input features stored waiting the related target value and it is arrived, it is

necessary to label this input features values and store this data as “pending for training”

• Method onPullRecv: it implements the behavior of the algoritm when PS send to workers the

updated model. Two operations could be performed here:

 If there are a set of unlabelled vectors, stored as “pending for predict”, a set of predictions will

be calculated.

 If there are a set of labelled vectors, stored as “pending for training”, they will be used to train

the model and perform a “push” operation to update the model in PS.

The algorithm basis are implemented in LassoBasicAlgorithm class. Two operations has been implemented:

class LassoBasicAlgorithm {

 override def delta(dataPoint : LabeledVector, model : LassoModel,

 label : Double, lastPrediction : Double) : LassoModel

 override def predict(dataPoint : LabeledVector, model : LassoModel) :

 Double

}

• Method delta implements how the model is trained.

• Method predict implements how to make a prediction using the model.

Deliverable D4.5 PROTEUS

687691 Page 29 of 44

3.3 Regression based ML algorithms

3.3.1 Notations

 = An -dimensional row vector input.

= The label or the outcome

 = A matrix calculated using

 = A diagonal matrix calculated using and

 = A matrix calculated using

 = An -dimensional column vector calculated using and

 = = prediction given by the algorithm

 = difference between in the prediction and label divided by the learning rate and the plus the Euclidean

norm of .

 = weight vector calculated by using either and or and .

3.3.2 Online Ridge Regression (ORR)

The algorithm performs the well-studied ridge regression algorithm [15] in online mode. Ridge Regression

adds a norm penalty term to ordinary least squares regression to deal with multicollinearity amongst

regression predictor variables. The pseudo-code is as follows:

Initialise:

FOR
 Read input

 output

 Read outcome

END FOR

3.3.3 Aggregation Algorithm for Regression (AAR)

This algorithm can be thought of as a game-theoretic version of ORR [16]. AAR algorithm is last-step min-

max optimal [17], which allows AAR to shrink the predictions. Also, AAR has a better upper bound on the

cumulative loss in comparison to ORR.

PROTEUS Deliverable D4.5

687691 Page 30 of 44

Initi alise:

FOR
 Read input

 output

 Read outcome

END FOR

3.3.4 Online Shrinkage via Limit Of Gibbs sampling (OSLOG)

The algorithm is an online version of shrinkage via limit of Gibbs sampling (SLOG) [18] OSLOG uses an

norm penalty resulting in a difficult problem to bound because norm is non-differentiable but is convex.

An approximation has been used to obtain sparsity in the solution. The pseudo-code of the algorithm is as

follows:

Initialise:

FOR
 Read input

 output

 Read outcome

END FOR

3.3.5 Competitive Online Iterative Ridge Regression (COIRR)

COIRR can be thought of as a game-theoretic version of OSLOG. The algorithm has the best upper bound on

cumulative loss under certain conditions. The pseudo-code of the algorithm is as follows:

Initialise:

FOR
 Read input

 output

 Read outcome

END FOR

Deliverable D4.5 PROTEUS

687691 Page 31 of 44

3.3.6 Competitive Online Normalised Least Mean Squares Regression (TNLMS)

This algorithm is a competitive online regression algorithm, which inspired from the work done in [19]. It

can handle drift based on first order information and is computationally the most efficient regression

algorithm in SOLMA [20]. The pseudo-code of the algorithm is as follows:

Initialise:

FOR
 Read input

 output

 Read

 Normalise loss

END FOR

3.4 Classification based ML algorithms

3.4.1 Online SVM

One of the important aspects of Support Vector Machine is that it generalizes easily to a broader set of

problems and it has a fast convergence performance. However, traditional SVM methods are not well-suited

for online scenarios. Online version of SVM [29], OSVM, is a solution for realtime scenarios, such as the

use-case for PROTEUS.

The basic idea behind OSVM is as follows. Initially, an OSVM operator gets data point xi. Then, the

operator pulls global parameters from the master node. Prediction is performed based on the information

received. Finally, local parameters are updated and global parameters with respect to the step size.

We implement OSVM on top of SOLMA.

class OSVM extends StreamTransformer[OSVM]

The OSVM object features stream events, OSVM model, label and unlabeled vector:

object OSVM extends WithParameters with Serializable {

 type OSVMStreamEvent = Either[(Long, StreamEvent), Label]

 type OSVMModel = (DenseVector[Double], Double)

 type UnlabeledVector = Vector[Double]

 type Label = (Long, Double)

One essential part of OSVM is prequential training (Listing 9). We provide necessary properties to the

stream transformer method, such as global parameters map, OSVM instance. Based on the current OSVM

PROTEUS Deliverable D4.5

687691 Page 32 of 44

model and gradient, the update module is built. Because OSVM uses parameter server, we also provide

worker and server logic.

override def transformDataStream(

 instance : OSVM,

 transformParameters : ParameterMap,

 input : DataStream[OSVMStreamEvent]

) : DataStream[Either[(Long, OSVM.UnlabeledVector, Double), (Int,

OSVM.OSVMModel)]] = {

 val workerParallelism : Int = instance.getWorkerParallelism

 val psParallelism : Int = instance.getPSParallelism

 val pullLimit : Int = instance.getPullLimit

 val featureCount : Int = instance.getFeaturesCount

 val iterationWaitTime : Long = instance.getIterationWaitTime

 val allowedLateness : Long = instance.getAllowedLateness

 val updater = (currModel : OSVM.OSVMModel, gradient : OSVM.OSVMModel) => {

 (currModel._1 - gradient._1, currModel._2 - gradient._2)

 }

 val rnd = new XORShiftRandom()

 val initializer = init(featureCount, - 8.0, 4.0, - 1.0, 1.0)

 val workerLogic = WorkerLogic.addPullLimiter(

 new OSVMWorkerLogic(

 new OSVMAlgorithm(instance)),

 pullLimit)

 val serverLogic = new RangePSLogicWithClose[OSVM.OSVMModel](featureCount,

initializer, updater)

 val paramPartitioner : WorkerToPS[OSVM.OSVMModel] => Int =

rangePartitionerPS(featureCount)(psParallelism)

 val wInPartition : PSToWorker[OSVM.OSVMModel] => Int = {

 case PSToWorker(workerPartitionIndex, _) => workerPartitionIndex

 }

 implicit val inputTypeInfo = createTypeInformation[OSVMStreamEvent]

 val partitionedInput = input.partitionCustom(

 new Partitioner[Long] {

 override def partition(k : Long, total : Int) : Int = {

 (k % total).toInt

 }

 },

 (event : OSVM.OSVMStreamEvent) => event match {

 case Left(v) => v._1

 case Right(v) => v._1

 })

 FlinkParameterServer.transform(

 partitionedInput,

 workerLogic,

 serverLogic,

 workerParallelism,

 psParallelism,

Deliverable D4.5 PROTEUS

687691 Page 33 of 44

 iterationWaitTime

)

 }

}

Listing 9. OSVM Prequential training

Listing 10 shows the main intuition behind OSVM algorithm. So, as we explained above, for every data

point, the model checks current and global model and performs necessary predictions based on the results of

previous step.

class OSVMAlgorithm(instance : OSVM) extends BaseOSVMAlgorithm[UnlabeledVector,

Double, OSVMModel] {

 override def delta(

 dataPoint : UnlabeledVector,

 model : OSVMModel,

 label : Double,

 t : Long

) : (DenseVector[Double], Double) = {

 val c = instance.getCParam()

 var sign = 0.0

 if (label * (dataPoint dot model._1 + model._2) < 1){

 sign = 1.0

 }

 val dirw = model._1 - c * label * dataPoint * sign

 val dirb = - label * sign

 (dirw * (1.0 / t), dirb * (1.0 / t))

 }

 override def predict(

 dataPoint : UnlabeledVector,

 model : OSVMModel) : Double = {

 signum(dataPoint dot model._1 + model._2)

 }

}

Listing 10. OSVM algorithm

3.4.2 Online Bilevel Stochastic Gradient for Support Vector Machine (OBSG_SVM)

Online bi-level stochastic gradient algorithm for support vector machine (OBSG-SVM) learns the

hyperplane and adjust the hyperparameter sequentially. In this setting, the algorithm goes through the data

one by one as the data comes sequentially. We denote ὼȟὸ ρȟςȟȣȟὝ the data sequence. When the dataset

is too large, going through the data points is more convenient. A competitive convergence guarantee is given
in [21] showing that with the stochastic algorithm going through it sequentially with a small number of

PROTEUS Deliverable D4.5

687691 Page 34 of 44

passes, the convergence rate will not be significantly worse than with replacement sampling. In [22], the

authors stated that going through one dataset multiple times can be regarded as a bias-variance trade-off.

In OBSG-SVM, instead of splitting the training set into a training fold and validation fold, we adjust the

model with the data that has been seen. At time t, the algorithm receives one data point ὼ Ȣ OBSG-SVM

firstly checks if the data point is an error vector (defined as ρ ώ ύὼ π in hinge loss). Then, it uses

the current error vector to train the lower optimisation problem and use the current and the previous error

vector to adjust the hyperparameter. The OBSG-SVM algorithm is summarized in below algorithm.

Initialise ύ πȟὅ πȟὅ ȟὅ

Initialise ὼ ὼȟώ ώ

While True:

Read data point

Predict ώ ίὭὫὲύ Ͻὼ

Receive true label

If ρ ώ ύὼ π
Calculate ᶯὋ ὅȟύ ύ ὅώὼ

Calculate ᶯὊ ὅȟύὅ ώὼ ώὼ

Perform the move ύ ύ ‌ ᶯὋ ὅȟύ

Perform the move ὅ ὅ ‌ ᶯὊ ὅȟύὅ

If ὅ ὅ ȟ ὅ ὅ

If ὅ ὅ ȟ ὅ ὅ

ὼ ὼȟώ ώ

In the algorithm, we take Ὃ as the inner objective function with the data point ὼ and Ὂ as the outer

objective function with the data point ὼ which is the previous error vector.

To explain the learning process more explicitly, we assume that ὼ ȟὼȟὼ are three error vectors in the

learning sequence. For the error vector ὼ, OBSG-SVM uses ὼ to learn the hyperplane (inner level problem),

and uses both ὼ and ὼ to adjust the hyperparameter ὅ (outer level problem). For the error vector ὼ ,

OBSG-SVM uses ὼ to learn the hyperplane (inner level problem) and both ὼ and ὼ to adjust the

hyperparameter ὅ (outer level problem). Note that each error vector is used once for learning the hyperplane

and used twice for adjusting the hyperparameter ὅ. This is interpreted as "double insurance" of the

hyperparameter ὅ by using twice of the error vectors.

To implement OBSG-SVM, the starting point ύ is randomly selected. The value ὅ π is chosen

according to experience or a small grid search. The same as BSG-SVM, the values of ὅ and ὅ are

used to avoid too small and too large values of ὅ which might cause numerical scaling problems in practice.

The diminishing step size rule is still applicable since we are using stochastic gradient descent. Instead of

learning with the randomly chosen data points, we do online passes on the training set. Practical choices of

the step size are ὕρȾὸ and ὕρȾЍὸ.

Distributed version of the algorithm is provided below.

Worker

Initialise ὼ ὼȟώ ώ

While True:

Read data point

Predict ώ ίὭὫὲύ Ͻὼ

Receive true label

N

t Rx 

}1,1{−ty

N

t Rx 

}1,1{−ty

Deliverable D4.5 PROTEUS

687691 Page 35 of 44

If ρ ώ ύὼ π
Calculate ᶯὋ ὅȟύ ύ ὅώὼ

Calculate ᶯὊ ὅȟύὅ ώὼ ώὼ

Perform the move ὅ ὅ ‌ ᶯὊ ὅȟύὅ

If ὅ ὅ ȟ ὅ ὅ

If ὅ ὅ ȟ ὅ ὅ

ὼ ὼȟώ ώ

ὨὩὺ‌ ᶯὋ ὅȟύ

Push local parameters ὨὩὺ to the master

Master

Initialize: × πȟ# πȟπ ʍ ρ,
While True:

Receive m local parameters ὨὩὺȟὭ ρȟȢȢȢȟά from the n workers ά ὲ

Compute the global parameter × from the collected local information

 × × В ὨὩὺ
t=t+1

3.4.3 Passive-Aggressive Learning (PA)

PA [23] algorithms solve an optimisation problem in each round which is formulated as:

 ύ ὥὶὫάὭὲ ȿȿύ ύȿȿ ίȢὸȢ ὰύ π .

where ὰύ is the hinge loss on instance ὼȟ ώ , i.e. ὰύ άὥὼπȟρ ώ ύϽὼ . In each

round, PA learning aggressively forces the loss to be zero and passively makes sure that the new

updated weight vector will be not too far from the previous weight vector. For detailed PA

derivation, please refer to deliverable D4.4 [24].

To cope with noise and be more robust, Crammer et. al. introduced a slack variable ‚ into the optimisation

problem using two types of penalty, namely, linear and quadratic. This results in two different variants of the

PA algorithm, i.e. PA-I and PA-II. The algorithms are as follows:

Initialise × πȟ# πȟπ ʍ ρ
While True:

Read data point

Predict ώ ίὭὫὲύ Ͻὼ

Receive true label

Compute coefficient ‌

 ‌

ȿȿ ȿȿ
 ὖὃ

N

t Rx 

}1,1{−ty

PROTEUS Deliverable D4.5

687691 Page 36 of 44

 ‌ ÍÉÎὅȟ

ȿȿ ȿȿ
 ὖὃ Ὅ

 ‌

ȿȿ ȿȿ
 ὖὃ ὍὍ

Update ×

 × × ‌ώὼ
t = t+1

We implement distributed PA method for online binary classification as follows. To design a distributed

version of PA, we opt for the Master/Slave architecture. The structure of the Master and Worker is given as

follows. At round t, each worker receives a new data point, predicts the label with the weight vector pulled

from Master. After receiving the true label, each worker computes a local parameter and sends them to the

Master. Then, the master aggregates the local parameter and updates the model.

Worker

While True:

Read data point

Pull global parameter ύ from the Master

Predict ώ ίὭὫὲύ Ͻὼ

Receive true label

Compute coefficient ‌

Compute local parameter ὨὩὺ‌ώὼ

Push local parameters ὨὩὺ to the master

Master

Initialize: × πȟ# πȟπ ʍ ρ,
While True:

Receive m local parameters ὨὩὺȟὭ ρȟȢȢȢȟά from the n workers ά ὲ

Compute the global parameter × from the collected local information

 × × ὨὩὺ

t=t+1

3.4.4 Online WAPA

Being motivated by the advantages of averaging methods, Weighted Averaging PA (WAPA) learns to

enhance the learning ability when there exist fluctuations such as label noise. WAPA passively retains the

weighted average × of the previous weight vectors when the hinge loss is zero; otherwise it reduces the

hinge loss suffered on the current data point less aggressively than PA updates. In the passive step, WAPA

employs the Exponential Weighted Moving Average (EWMA) ύ ρ ʍύ ʍύ which gives

higher weight to the more recent weight vectors. The parameter ʍ is a smoothing factor in EWMA.

Combining with the PA optimisation in each round, the update for WAPA is × × ”‌ώὼ with

the coefficient ‌ as shown in the following algorithm.WAPA provides extra robustness since the latest data

might contain up to date information. For detailed WAPA derivation, please refer to deliverable D4.4 [4].
 The algorithm are presented as follows:

}1,1{−ty

Deliverable D4.5 PROTEUS

687691 Page 37 of 44

Initialise × πȟ# πȟπ ʍ ρ
While True:

Read data point

Predict the true label ώ ίὭὫὲύϽὼ

Receive true label

Compute coefficient ‌

 ‌

ȿȿ ȿȿ
 ὡὃὖὃ

 ‌ ÍÉÎὅȟ

ȿȿ ȿȿ
 ὡὃὖὃὍ

 ‌

ȿȿ ȿȿ
 ὡὃὖὃὍὍ

Update ×

 × × ”‌ώὼ

t = t+1

Distributed Online WAPA is implemented with the same structure as Distributed PA.

Worker

While True:

Read data point

Pull global parameter × from the Master

Predict ώ ίὭὫὲ ×Ͻὼ

Receive true label

Compute coefficient ‌

Compute local parameter ὨὩὺ”‌ώὼ

Push local parameters ὨὩὺ to the master

Master

Initialize: × πȟ# πȟπ ʍ ρ,
While True:

Receive m local parameters ὨὩὺȟὭ ρȟȢȢȢȟά from the n workers ά ὲ

Compute the global parameter × from the collected local information

The below algorithm is executed in master machine. In each step t is increase by one: t=t+1

 × × ὨὩὺ

N

t Rx 

}1,1{−ty

N

t Rx 

}1,1{−ty

PROTEUS Deliverable D4.5

687691 Page 38 of 44

3.5 Sampling algorithms

3.5.1 Simple reservoir sampling

Reservoir sampling belongs to a family of randomized algorithms. The main idea behind randomized

algorithms is to pose some degree of randomness as part of its logic. The degree should be configurable by

user specified parameters.

We implement reservoir sampling in SOLMA pipeline developed on top of Apache Flink [11]. We can see

the base class from Listing 11. The main class extends from StreamTransformer class in SOLMA pipeline.

We provide the parameter, which is reservoir size.

@Proteus

class SimpleReservoirSampling extends StreamTransformer[SimpleReservoirSampling]

{

 def setReservoirSize(size : Int) : SimpleReservoirSampling = {

 parameters.add(ReservoirSize, size)

 this

 }

}

Listing 11. Simple reservoir sampling class

Error! Not a valid bookmark self-reference. shows the main logic behind simple reservoir sampling

function. This function is implemented as a black-box by a user and provided to SOLMA pipeline. It is the

job of SOLMA pipeline to utilize this implicit transformation in the correct places of distributed streaming

pipeline. Here we implement TransformDataStreamOperation trait, from SOLMA library. After

deducing the type info of record tuples, we transform our transformation into user defined function inside a

flatmap operation. Flatmap operator takes one record as an input and may produce zero or more output

records. We adopt stateful flatmap operator, as we need to hold state for reservoirs. If the reservoir size is

less than a given threshold, then we add incoming tuple to the state of operator. Otherwise, we generate an

integer number and based on that, we decide whether to hold new record in reservoir to not.

implicit def treansformSimpleReservoirSampling[T <: Vector : TypeInformation :

ClassTag] = {

 new TransformDataStreamOperation[SimpleReservoirSampling, T, T]{

 override def transformDataStream(

 instance : SimpleReservoirSampling,

 transformParame ters : ParameterMap,

 input : DataStream[T])

 : DataStream[T] = {

 val resultingParameters = instance.parameters ++ transformParameters

 val statefulStream = FlinkSolmaUtils.ensureKeyedStream[T](input,

 resultingParameters.get(PartitioningOperation))

 val k = resultingParameters(ReservoirSize)

 val gen = new XORShiftRandom()

 implicit val typeInfo = createTypeInformation[(Long, Array[T])]

 statefulStream.flatMapWithState((in, state : Option[(Long, Array[T])]) =>

{

 val (element, _) = in

 state match {

 case Some(curr) => {

Deliverable D4.5 PROTEUS

687691 Page 39 of 44

 val (streamCounter, reservoir) = curr

 val data = new mutable. ListBuffer[T]()

 if (streamCounter < k) {

 reservoir(streamCounter.toInt) = element

 data += element

 } else {

 val j = gen.nextInt(streamCounter.toInt + 1)

 if (j < k) {

 reservoir(j) = element

 data += element

 }

 }

 (data, Some((streamCounter + 1, reservoir)))

 }

 case None => {

 val reservoir = Array.ofDim[T](k)

 reservoir(0) = element

 (Seq(element), Some((1L, reservoir)))

 }

 }

 })

 }

 }

 }

Listing 12 Main transformation function for simple reservoir sampling

3.5.2 Adaptive reservoir sampling

Adaptive reservoir sampling maintains the reservoir sample after the size is adjusted. It is proven that, when

the reservoir size decreases, the algorithm generates a sample in the reduced reservoir with a 100%

uniformity confidence (UC), defined in [25]. This means each item in the reduced reservoir has an equal

probability of being selected from the stream. In contrast, when the reservoir size is increased, the enlarged

reservoir cannot be maintained with a 100% uniformity confidence.

The adaptive reservoir sampling algorithm runs as follows. If the reservoir size does not change, reservoir

sampling is used. If the reservoir size decreases by , the algorithm discards  items from the original

reservoir and then continues. In contrast, if the reservoir size increases by , the algorithm computes the

minimum value of m (defined as the number of incoming items used to fill the enlarged reservoir) that causes

the uniformity confidence to exceed a given threshold . Afterwards, it flips a biased coin to decide on how

many items x are retained among the k items in the original reservoir. k-x items are randomly discarded from

the original reservoir. The enlarged reservoir is refilled with k+-x items from the arriving m items. For the

detailed algorithm please see deliverable D4.2 [27].

3.5.3 Weighted reservoir sampling

Weighted random sampling is used in cases where items are assigned with weights. The probability of each

item being selected is determined by its weight. One interpretation is that the probability of being selected is

PROTEUS Deliverable D4.5

687691 Page 40 of 44

determined by the weight of each item. We implement here the algorithm A-Res [26]. The key Ὧ of stream

item Ὓ in the population is defined as Ὧ ό
Ⱦ

 (ύ is the weight of the Ὥ th streaming data) with a uniform

random number ό ὶὥὲὨέάπȟρ. Firstly, the algorithm keeps the first ά items in the reservoir and

calculates their key. If the key of the new arriving item is larger than the minimum key in thereservoir, the

minimum key item is replaced by the new arriving one. This step is repeated until the data stream is

exhausted. For the detailed algorithm please see deliverable D4.2 [27].

3.6 Moments

The moving average updates as new values become available, the oldest data points must be dropped from

the set and new data points come in to replace them. Thus, the data set is constantly "moving" to account for

new data as it becomes available. This method of calculation ensures that only the current information is

averaged.

The weighted average formula is used to calculate the average value of a set of numbers according to their

relevance. The relevance of each number is called its weight. The weights can be between 0 and 1 inclusive.

ὡὩὭὫὬὸὩὨ ὃὺὫύὼ ύὼ ȢȢȢ

In the above equation ὼ denotes the incoming stream Ὥ-th component and ύ denotes the relevant weight.

The exponential average is a weighted average, where the weighting decreases and increases exponentially.

3.7 Frequent Directions

Frequent directions is a matrix sketching algorithm. One of its main features is that it is deterministic. The

algorithm is built on the similarity between matrix sketching and frequency estimation problem and provides

specific error bounds for it.

Let B be axb sketch matrix of A which is an input matrix. For every input row from A, the matrix B is

updated. The algorithm keeps the invariant that last added row of sketch always all-zero valued. These all-

zero valued rows are replaced by the rows that are transferred from A to B. During the execution, sketch is

rotated using its singular value decomposition (SVD). As a result of this operation, row of the sketch matrix

B are orthogonal and remain in decending magnitude order. More details of the algorithm can be found in

original paper [28].

Listing 13 shows main class of FrequentDirections. We extend from StreamTransformer interface and set

feature count, sketch size and aggregation hint. These methods are essential to provide user-specified

parameters to the algorithm. The main function, on the other hand, is shown in Listing 14. Basically, we keep

sketches in stateful flatmaps. So, out sketching problem is translated to Flink’s DataStream API. If user

enables aggregations, we use folding technique to aggregate relative values inside the sketch.

class FrequentDirections extends StreamTransformer[FrequentDirections] {

 import FrequentDirections._

 def setFeaturesNumber(count : Int) : FrequentDirections = {

 parameters.add(FeaturesNumber, count)

 this

 }

 def setSketchSize(size : Int) : FrequentDirections = {

Deliverable D4.5 PROTEUS

687691 Page 41 of 44

 parameters.add(SketchSize, size)

 this

 }

 def enableAggregation(enabled : Boolean) : FrequentDirections = {

 parameters.add(AggregateSketches, enabled)

 this

 }

}

Listing 13. Frequent Directions class

implicit def treansformFrequentDirections[T <: Vector : TypeInformation :

ClassTag] = {

 new TransformDataStreamOperation[FrequentDirections, T, T] {

 override def transformDataStream(

 instance : FrequentDirections,

 transformParameters : ParameterMap,

 input : DataStream[T])

 : DataStream[T] = {

 val resu ltingParameters = instance.parameters ++ transformParameters

 val statefulStream = FlinkSolmaUtils.ensureKeyedStream[T](

 input, resultingParameters.get(PartitioningOperation))

 ell = resultingParameters(SketchSize)

 d = resultingParameters(FeaturesNumber)

 assert(ell < d * 2, "the sketch size should be smaller" +

 " than twice the number of features")

 val sketchesStream = statefulStream.flatMapWithState(

 (in, state : Option[Sketch]) => {

 val (elem, _) = in

 val out = new ListBuffer[BreezeVector[Double]]()

 val sketch = updateSketch(elem.asBreeze, state, out)

 (out, Some(sketch))

 }

)

 if (resultingParameters(AggregateSketches)) {

 sketchesStream.fold(None.asInstanceOf[Option[Sketch]])((acc, item)

=> {

 Some(updateSketch(item, acc))

 }).flatMap((acc, out) => {

 val Sketch(zeroRows, matrix) = acc.get

 val toOutputType = (x : BreezeVector[Double]) =>

x.copy.fromBreeze.asInstanceOf[T]

 if (zeroRows.isEmpty) {

 (0 until matrix.rows) foreach (i => out collect

toOutputType(matrix(i, ::).t))

 }

 })

 } else {

 sketchesStream.map(x => {

 x.fromBreeze.asInstanceOf[T]

 })

 }

 }

 }

 }

Listing 14. Main transformation for Frequent Directions.

PROTEUS Deliverable D4.5

687691 Page 42 of 44

4 Conclusions

Scalable online machine learning is one of the fundamental pieces of PROTEUS. In this work package, we

develop SOLMA library, which is used not only in the scope of PROTEUS, but also for other scalable

machine learning problems. The library is open source and open for contributions. In this deliverable, we

provide a general abstraction for SOLMA library. The abstraction is useful to structure algorithm

implementation. We benefit from state-of-the-art designs, such as FlinkML and python scikit. One main

difference of SOLMA abstraction and existing works is that the former is designed to online machine

learning scenarios, while for latter ones are designed for mainly offline algorithms. Moreover, we provide a

general overview of algorithms implemented on top of SOLMA. The full version of our library is open

source and ready to use.

Deliverable D4.5 PROTEUS

687691 Page 43 of 44

References

[1] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, and M. Young,

“Machine learning: The high interest credit card of technical debt,” in SE4ML: Software Engineering

for Machine Learning (NIPS 2014 Workshop), 2014.

[2] A. Alexander, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser

and V. Markl, "The stratosphere platform for big data analytics," The VLDB Journal, vol. 23, no. 6,

pp. 939-964, 2014.

[3] The Apache Software Foundation, "Apache Flink," 31 12 2015. [Online]. Available: flink.apache.org.

[Accessed 17 May 2016].

[4] S. Ewen, K. Tzoumas, M. Kaufmann and V. Markl, "Spinning fast iterative data flows," Proceedings

of the VLDB Endowment, vol. 5, no. 11, pp. 1268-1279, 2012.

[5] Apache Kafka project

[6] K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The hadoop distributed file system," in IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), 2010

[7] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans and E. Baldeschwieler,

"Apache hadoop yarn: Yet another resource negotiator," in Proceedings of the 4th annual Symposium

on Cloud Computing, 2013

[8] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. 2013. On evaluating stream learning

algorithms. Mach. Learn. 90, 3 (March 2013), 317-346.

[9] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. MOA: Massive Online

Analysis. J. Mach. Learn. Res. 11 (August 2010), 1601-1604.

[10] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller. 2015. Scikit-learn:

Machine Learning Without Learning the Machinery. GetMobile: Mobile Comp. and Comm. 19, 1

(June 2015), 29-33.

[11] https://github.com/proteus-h2020/proteus-

solma/blob/master/src/main/scala/eu/proteus/solma/sampling/SimpleReservoirSampling.scala

[12] https://github.com/proteus-h2020/proteus-solma/

[13] http://scikit-learn.org/stable/

[14] Senin, Pavel, and Sergey Malinchik. "Sax-vsm: Interpretable time series classification using sax and

vector space model." Data Mining (ICDM), 2013 IEEE 13th International Conference on. IEEE, 2013.

[15] Horel, A.E. and Kennard, R.W., 1988. Ridge regression, encyclopedia of statistical sciences

[16] Vovk, V., 2001. Competitive onȤline statistics. International Statistical Review, 69(2), pp.213-248

[17] Forster, J., 1999, August. On relative loss bounds in generalized linear regression. In International
Symposium on Fundamentals of Computation Theory (pp. 269-280). Springer, Berlin, Heidelberg

[18] Rajaratnam, B., Roberts, S., Sparks, D. and Dalal, O., 2016. Lasso regression: estimation and
shrinkage via the limit of Gibbs sampling. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(1), pp.153-174.

[19] Cesa-Bianchi, N., Long, P.M. and Warmuth, M.K., 1996. Worst-case quadratic loss bounds for
prediction using linear functions and gradient descent. IEEE Transactions on Neural Networks, 7(3),
pp.604-619.

[20] Moroshko, E., Vaits, N. and Crammer, K., 2015. Second-order non-stationary online learning for
regression. Journal of Machine Learning Research, 16, pp.1481-1517

[21] O. Shamir, Without-Replacement Sampling for Stochastic Gradient Methods, Advances in Neural

Information Processing Systems 29, D. D. Lee and M. Sugiyama and U. V. Luxburg and I. Guyon and

R. Garnett, 46--54, 2016

https://github.com/proteus-h2020/proteus-solma/blob/master/src/main/scala/eu/proteus/solma/sampling/SimpleReservoirSampling.scala
https://github.com/proteus-h2020/proteus-solma/blob/master/src/main/scala/eu/proteus/solma/sampling/SimpleReservoirSampling.scala
https://github.com/proteus-h2020/proteus-solma/
http://scikit-learn.org/stable/

PROTEUS Deliverable D4.5

687691 Page 44 of 44

[22] T. Zhang: Solving large scale linear prediction problems using stochastic gradient descent algorithms.

In: Proceedings of the Twenty-First International Conference on Machine Learning, 2004

[23] Crammer, Koby and Dekel, Ofer and Keshet, Joseph and Shalev-Shwartz, Shai and Singer, Yoram,

Online Passive-Aggressive Algorithms, . Mach. Learn. Res.,12/1/2006,7, 551—585, 2006

[24] Wenjuan Wang, Javier De Matias Bejarano, Waqas Jamil, Chemmseddine Mansouri, Hamid

Bouchachia, D4.4 Scalable Drift and Anomaly Detection, PROTEUS (www.proteus-

bigdata.com/results), 2018

[25] M. Al-Kateb, B. S. Lee, and X. S. Wang. Adaptive-size reservoir sampling over data streams. In

Proceedings of the 19th International Conference on Scientific and Statistical Database Management,

SSDBM ’07, pages 22–, Washington, DC, USA, 2007

[26] P. S. Efraimidis and P. G. Spirakis. Weighted random sampling with a reservoir. Information

Processing Letters, 97(5):181 – 185, 2006

[27] Hamid Bouchachia, Waqas Jamil, Wenjuan Wang, D4.2 Basic scalable streaming algorithms,

PROTEUS (www.proteus-bigdata.com/results), 2017

[28] Ghashami, Mina, Edo Liberty, and Jeff M. Phillips. "Efficient frequent directions algorithm for sparse

matrices." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. ACM, 2016.

[29] Zhou, Xujun, Xianxia Zhang, and Bing Wang. "Online Support Vector Machine: A Survey." Harmony
Search Algorithm. Springer, Berlin, Heidelberg, 2016. 269-278.

	Executive summary
	Document Information
	Table of Contents
	List of listings
	List of Figures
	Abbreviations
	1 Introduction
	2 SOLMA Pipeline
	2.1 State-of-the-art libraries
	2.2 SOLMA Abstraction

	3 SOLMA Library
	3.1 SAX
	3.1.1 Description
	3.1.2 Implementation
	3.1.3 Example code snippets

	3.2 LASSO
	3.2.1 Description
	3.2.2 Implementation
	3.2.3 Example code snippets

	3.3 Regression based ML algorithms
	3.3.1 Notations
	3.3.2 Online Ridge Regression (ORR)
	3.3.3 Aggregation Algorithm for Regression (AAR)
	3.3.4 Online Shrinkage via Limit Of Gibbs sampling (OSLOG)
	3.3.5 Competitive Online Iterative Ridge Regression (COIRR)
	3.3.6 Competitive Online Normalised Least Mean Squares Regression (TNLMS)

	3.4 Classification based ML algorithms
	3.4.1 Online SVM
	3.4.2 Online Bilevel Stochastic Gradient for Support Vector Machine (OBSG_SVM)
	3.4.3 Passive-Aggressive Learning (PA)
	3.4.4 Online WAPA

	3.5 Sampling algorithms
	3.5.1 Simple reservoir sampling
	3.5.2 Adaptive reservoir sampling
	3.5.3 Weighted reservoir sampling

	3.6 Moments
	3.7 Frequent Directions

	4 Conclusions
	References

