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Abstract 

In this deliverable, we describe our first prototype of the PROTEUS optimizer. One of the main objectives of 

PROTEUS is to provide the end-users with a Domain Specific Language (DSL) that allows them to define 

Machine Learning algorithms on data streams. We proposed Lara as DSL for linear algebra and relational 

operations on streams (for details on Lara see D3.4 – D3.8). Our proposed language maps each linear algebra 

operation to one specific high-order operator of the underlying execution dataflow engine (e.g., Apache Flink). 

However, the language requires an extra module to perform holistic optimization on the sequence of high-

order operators, which are shipped to the execution engine for the actual processing. To this end, we introduce 

the PROTEUS optimizer that analyzes the logical execution plan of a streaming query (containing Machine 

Learning methods) and perform non-trivial optimizations tailored to the domain specific language. In 

particular, the PROTEUS optimizer performs operator fusion for Sum-Product operators. This optimization 

results in less intermediate results and resource efficiency. We target this class of optimizations because almost 

all the PROTEUS workloads contain machine learning  methods, which rely on linear algebra operations. 

This enables better resource management of the underlying execution engine as it results in fewer operator 

being scheduled for execution. 
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Executive summary  

In this deliverable, we describe a first prototype of the PROTEUS optimizer. One of the main objectives of 

PROTEUS is to provide the end-users with a Domain Specific Language that allows them to define Machine 

Learning algorithms on data streams. To that end, we proposed Lara as Domain Specific Language for linear 

algebra operations on streams (see D3.4 – D3.8). Our proposed language maps each linear algebra in one 

specific high-order operator of the underlying execution engine (e.g., Apache Flink). However, the language 

requires an extra module to perform holistic optimization on the sequence of high-order operators, which are 

shipped to the execution engine for the actual processing. To this end, we introduce the PROTEUS optimizer, 

a module that analyzes the logical execution plan of a streaming query and perform non-trivial optimizations 

tailored to the domain specific language, namely, it performs operator fusion for Sum-Product operators. This 

enables better resource management of the underlying execution engine as it results in fewer operator being 

scheduled for execution. 

In this document, we first provide a comprehensive list of common optimizations for stream data processing 

(e.g., operator fusion, operator fission) as well as the current state-of-the-art optimizations for systems for 

declarative large-scale offline machine learning (i.e., SystemML and SPOOF). We start from those two types 

of optimizations and we build an optimizer that combines these two worlds, i.e., our optimizer performs Sum-

Product optimizations by means of operator fusion. 
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1 Introduction 

One of the main objectives of PROTEUS is to provide the end-users with a Domain Specific Language (DSL) 

that allows them to define Machine Learning algorithms on data streams. We proposed Lara as DSL for linear 

algebra and relational algebra operations on streams (for details on Lara see D3.4 – D3.8). The Lara language 

maps each linear algebra operation to one specific high-order operator of the underlying execution dataflow 

engine (e.g., Apache Flink). However, our language compiler requires an extra component to perform holistic 

optimization on the sequence of high-order operators, which are shipped to the execution engine for the actual 

processing. To this end, we introduce the PROTEUS optimizer in this deliverable. Our PROTEUS Optimizer 

is designed to analyze the logical execution plan of a streaming query (containing Machine Learning methods) 

and to perform not-trivial optimizations. These optimizations are tailored to the domain specific language and 

thus for analytics workloads containing online machine learning methods. In particular, the PROTEUS 

optimizer performs operator fusion for Sum-Product operators. This optimization results in less intermediate 

results and resource efficiency. We target this class of optimizations because almost all the PROTEUS 

workloads contain machine learning  methods, which rely on linear algebra operations. This enables better 

resource management of the underlying execution engine as it results in fewer operator being scheduled for 

execution. 

This document is structured as follows: we provide basic background information regarding common 

streaming optimizations and Sum-Product class of optimization for offline machine learning. Then, we provide 

the description of the first prototype of a PROTEUS optimizer in Section 3. Then, we describe how we plan 

to extend the PROTEUS optimizer in Section 4. 
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2 Background 

In this section, we provide the background knowledge regarding common techniques for stream processing 

optimization and common optimization for execution plans meant for machine learning workloads. 

2.1 Common Streaming Optimizations 

Hirzel et al. present eleven techniques for stream processing optimization [1], each with different 

characteristic and profitability.  

 

OPERATOR REORDERING (A.K.A. HOISTING, SINKING, ROTATION, PUSH-DOWN) 

Move more selective operators upstream to filter data early. The key idea of operator reordering is to 

move operators that perform selection or projection before costly operators (e.g., join). 

 

 
 

REDUNDANCY ELIMINATION (A.K.A. SUBGRAPH SHARING, MULTI-QUERY 

OPTIMIZATION) 

Eliminate redundant computations. This optimization removes those components of the query graph 

that are performing redundant work. The idea is to reuse intermediate results as much as possible.  

 

 
 

OPERATOR SEPARATION (A.K.A. DECOUPLED SOFTWARE PIPELINING) 

Separate operators into smaller computational steps. The main idea behind operator separation is to 

enable other optimizations such as operator reordering or fission and to build parallel pipelines that 

scale better on multi-core systems. 

 

 
 

FUSION (A.K.A. SUPERBOX SCHEDULING) 

Avoid the overhead of data serialization and transport. Fusion trades communication cost against 

pipeline parallelism. The communication cost between two fused operators is cheap. However, fused 

operators might run on different cores and thus having the upstream operator reading a new item, 

while the downstream operator is still processing the previous item. 

 
 

FISSION (A.K.A. PARTITIONING, DATA PARALLELISM, REPLICATION) 
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Parallelize computations. The intuition behind this optimization is to assign items of the input stream 

to different instances of the upstream operator. This requires upfront partitioning but allows for 

parallel execution of the upstream operator.  

 
 

PLACEMENT (A.K.A. LAYOUT) 

Assign operators to hosts and cores. The key idea behind placement is to assign specific operators to 

specific computing resources. For instance, if an operator requires a large amount of memory to 

perform its task, it would be beneficial to place it on a node equipped with more memory. 

 
 

LOAD BALANCING 

Distribute workload evenly across resources. The purpose of this optimization is to ensure a balanced 

workload on every parallel instance of an operator, thus fighting skewness. 

 

 
 

STATE SHARING (A.K.A. SYNOPSIS SHARING, DOUBLE-BUFFERING) 

Optimize for space by avoiding unnecessary copies of data. State sharing can result in high-

throughput processing as it decreases the memory footprint, which leads to less cache misses or disk 

I/O. 
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BATCHING (A.K.A. TRAIN SCHEDULING, EXECUTION SCALING) 

Process multiple data items in a single batch. Batching trades latency with throughput. Batching can 

improve throughput by amortizing operator-firing and communication costs over more data items. 

Such 

 

 
 

ALGORITHM SELECTION (A.K.A. TRANSLATION TO PHYSICAL QUERY PLAN) 

Use a faster algorithm for implementing an operator. 

 
 

LOAD SHEDDING (A.K.A. ADMISSION CONTROL, GRACEFUL DEGRADATION) 

Degrade gracefully when overloaded. The intuition behind load shedding is to drop some input items 

when the operator is overloaded. Another technique that allows for load shedding is approximation. 

 
 

As of May 2018, the PROTEUS platform, which is based on Apache Flink 1.4 release, supports all 

the above optimizations expect for the algorithm selection and the load shedding. 

 

2.2 Machine Learning Optimizations 

 

Several researchers proposed a number of optimizations for large-scale machine learning systems running in 

a batch fashion. Those systems allow the user to define machine learning algorithms through linear algebra 

and relational algebra and they generate efficient execution plans [2]. The main intuition behind the optimizers 

of those system deals with reducing the number of materialized intermediate results, reducing the number of 

scans of the input, and leveraging sparsity when operator chaining is involved. 

Boehm et al. proposed above optimizations in their SystemML – SPO (Sum-Product Optimizer) frameworks 

[3]. In particular, they focused on Sum-Product Optimizations, Operator Fusion, and Sparsity exploitation [2, 

4]. Briefly, SPO analyzes the execution plan produced by SystemML, rewrites the plan by fusing sum and 
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matrix operations, and then compiles the plan through SystemML to the underlying execution engine (e.g., 

Apache Spark). 
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3 The PROTEUS Optimizer 

Optimizations such as operator fusion are well-known techniques in the area of stream data processing. Stream 

processing engines such as Apache Flink already feature this type of optimizations. Systems designed for large 

scale machine learning also feature those optimizations but only in a batch execution model. In this deliverable, 

we develop a prototype of an optimizer that combines pure-streaming operator fusion techniques with Sum-

Product optimizations. We tailor Sum-Product optimization because they can easily be applied to a variety of 

linear machine learning models including in SOLMA library of the PROTEUS project. We build our 

PROTEUS optimizer on top of the Apache Flink Streaming APIs. 

Before we delve into the technical details of our solution, we present in the following a motivational example 

regarding how a General Linear Model such as Lasso can be mapped to dataflow execution plan. We target 

this specific algorithm for two main reasons: 1. it features a Sum-Product operation and 2. it is the main 

algorithm used in the PROTEUS validation scenario. Then, we highlight how this basic mapping results in a 

loss of performance and what an optimizer should do to prevent such performance degradation. 

Consider the traditional formulation of the objective function of Lasso (a Linear Model): 

 

 

 

We train Lasso using the Stochastic Gradient Descent as online optimization method and L1 regularization. To 

implement that formulation, we could use a high-level language such as Scala and we would obtain something 

similar to the following snippet: 

 

1. def computeGradient(X: Matrix, Y: Vector, oldGradient: Matrix): (Matrix, Double) = {   
2.     val diff = X %*% W - Y // calculate activations 
3.     val loss = diff * diff / 2.0 // calculate loss 
4.     val newGradient = diff * data + oldGradient // calculate new gradient 
5.     (newGradient, loss)   
6. }   
7.  
8. def L1Updater(grad: Matrix, oldW: Matrix, regP: Double, stepSize: Double, epoch: Int): Matrix = { 
9.     val stepSizeCurrentEpoch = stepSize / math.sqrt(epoch)  
10.     val W = stepSizeCurrentEpoch * grad + oldW // calculate new weights given gradient and step 
11.     val shrinkageVal = regP * stepSizeCurrentEpoch 
12.     W foreach {   
13.         value => signum(value) * max(0.0, abs(value) - shrinkageVal) // apply L1 regularization   
14.     }   
15. }   

 

The above code however is meant for single-thread execution, i.e., it is not scalable. To make it scalable, we 

need to reformulate it using the APIs of a dataflow engine such as Apache Flink or Apache Spark. To this end, 
we show in the following how a system expert would code the same snippet using the streaming APIs of 

Apache Flink.  

We assume that our program receives a stream of labelled data points and also uses a system-specific aspect 

to broadcast the updated model to the workers. In particular, we use a feedback edge in the dataflow graph in 

order to merge all the gradients produced by the different workers and broadcast the updated model to all the 

workers. The overall implementation result in a very cumbersome-to-follow block of code where language 

specific constructs (e.g., lambdas, Options, Either) are mixed with system-specific features (e.g., iteration, 

connected streams). We highlight that the below hand-crafted code snippet results in an optimal streaming 

execution plan when executed on Apache Flink. The main logic of the Lasso algorithm is embedded in a set 

of User Defined Functions as follows: 
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1. asynchronously compute the gradient upon the arrival of a minibatch of points using the latest model 

available 

2. asynchronously merge the gradients produced by the different workers   

3. asynchronously update the current model with a merged gradient and broadcast the new model to 

every worker. 

1. val env = ... 
2. val trainingStream = env.addSource(...).map(Left(_))  
3. val initialWeights = env.addSource(WeightRandomInitializer()).map(Right(_))  
4. def stepFunc(workerIn: ConnectedStreams[Matrix, Matrix]):  
5. (DataStream[Matrix], DataStream[Either[Matrix, Matrix]]) = {   
6.     val worker = workerIn.flatMap(new RichCoFlatMapFunction[Matrix, Matrix, Either[Matrix, Matrix

]] { 
7.      @transient var stagedBatches = _ 
8.      @transient var currentModel = _  
9.      override def open(parameters: Configuration): Unit = {   
10.        stagedBatches = new mutable.Queue[Matrix]() currentModel = None   
11.      } // incoming answer from PS   
12.      override def flatMap2(newModel: Matrix, out: Collector[Either[Either[(Matrix, Double), Matri

x], Matrix]]): Unit = { currentModel = Some(newModel)  } // incoming data   
13.     override def flatMap1(dataOrInitialModel: Either[Matrix, Matrix], out: Collector[Either[(Matr

ix, Double), Matrix]]): Unit = {   
14.     dataOrInitialModel match {   
15.         case Left(data) => {   
16.        if (data.isLabelled) {   
17.           currentModel match {   
18.              case Some(model) => {   
19.                val diff = miniBatch % * % model - Y  
20.                val loss = diff * diff / 2.0  
21.                val newGradient = diff * data + oldGradient  
22.                out.collect(Left(Left(newGradient, loss)))   
23.              }   
24.              case _ => stagedBatches.add(miniBatch)   
25.           }   
26.        } else {  
27.           // do prediction here wrapping it with Right   
28.        }   
29.      }   
30.      case Right(model) => {   
31.       currentModel = Some(model) out.collect(Left(Right(model)))   
32.      }   
33.    }   
34.   }   
35.  }).setParallelism(workerParallelism)  
36.  val wOut = worker.flatMap(x => x match {   
37.    case Right(out) => Some(out)   
38.    case _ => None   
39.  }).setParallelism(workerParallelism)  
40.  val ps = worker.flatMap(x => x match {   
41.    case Left(workerOut) => Some(workerOut)   
42.    case _ => None   
43.  }) 
44.  .setParallelism(workerParallelism) 
45.  .partitionCustom(new Partitioner[Int]() {   
46.    override def partition(key: Int, numPartitions: Int): Int = key % numPartitions   
47.  }, paramPartitioner).flatMap( 
48.     new RichFlatMapFunction[Either[(Matrix, Double), Matrix], Either[Matrix, Matrix]] {@   
49.       transient val currentModel = _ override  
50.       def open(p: Configuration): Unit = {   
51.         super.open(p)  
52.         currentModel = None   
53.       }   
54.       override def flatMap(msg: Either[(Matrix, Double), Matrix], 
55.            out: Collector[Either[Matrix, Matrix]]): Unit = {   
56.         msg match {   
57.           case Left(t) => {   
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58.             val tmp = currentModel.get * t._1   
16.             val stepSizeCurrentEpoch = stepSize 
17.             val W = stepSizeCurrentEpoch * grad + (tmp / 2)  
18.             val shrinkageVal = regP * stepSizeCurrentEpoch 
19.             W = W foreach {   
20.              value => signum(value) * max(0.0, abs(value) - shrinkageVal)   
59.             } 
60.             out.collect(W) 
61.           }   
62.           case Right(model) => currentModel = Some(model)   
63.         }   
64.       }   
65.     }).setParallelism(psParallelism)  
66.   val psToWorker = ps.flatMap(_ match {   
67.     case Left(x) => Some(x)   
68.     case _ => None   
69.   }).setParallelism(psParallelism) // TODO avoid this empty map?   
70.   .map(x => x) 
71.   .setParallelism(workerParallelism) 
72.   .partitionCustom(new Partitioner[Int]() {   
73.     override def partition(key: Int, numPartitions: Int): Int = {   
74.       if (0 <= key && key < numPartitions) {   
75.         key   
76.       } else {   
77.         throw new RuntimeException("Pull answer key should be the partition ID itself!")   
78.       }   
79.     }   
80.  }, wInPartition)  
81.  
82.  val psToOut = ps.flatMap(_ match {   
83.    case Right(x) => Some(x)   
84.    case _ => None   
85.  }) 
86. .setParallelism(psParallelism)  
87. val wOutEither: DataStream[Either[Either[(Matrix, Double), Matrix], Matrix]] =  
88.     wOut.forward.map(x => Left(x))  
89. val psOutEither: DataStream[Either[Matrix, Matrix]] =  
90.   psToOut.forward.map(x => Right(x))( 
91.   psToWorker,  
92.   wOutEither 
93.    .setParallelism(workerParallelism) 
94.    .union(psOutEither.setParallelism(psParallelism)) 
95.  )   
96. } 
97.  
98. trainingStream 
99.        .countWindow(miniBatchSize) 
100. .apply(toMatrixTransformer) 
101. .union(initialWeights) 
102. .iterate(x: ConnectedStream[Matrix, Matrix] => stepFunc(x), iterationWaitTime)   
103.  

 

3.1 Compilers and Optimizers to the Rescue 

 

The example in the above section shows how a simple algorithm such as Lasso result in a muddle of system-

specific constructs as well as language-specific aspects. However, the user really expects to have something 

like: 

 

1. val  env  =  ... 
2. val  trainingStream  =  env.addSource(...).toMatrix 
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3. val  initialModel  =  env.addSource(LassoModelRandomInitializer()).toMatrix 
4. withFeedback(trainingStream,  initialModel)  {         
5.     (X, model)  =>  {             
6.         val d = diag(DenseMatrix(X.colsNum)(sqrt(abs(model.gamma)))) 
7.         val  A  =  model.A + X %*% X.t + inv(d)  
8.         val  prediction  =  model.b.t %*% inv(A) %*% X 
9.         (prediction, (A, gamma))         
10.     },    
11.     (currModelA, currModelB) => currModelA + currModelB, 
12.     (currModel, Y, X)  =>  {             
13.         val l = Y %*% X 
14.         currModel.b += l 
15.     } 
16. }     

 

In the above snippet, we abstract the complexity of the feedback loop and we use an online Lasso formulation 

close to the one used in the PROTEUS SOLMA library (see D4.3), which was used in the Flink example and 

we let the end-user define only: 

1. how to compute the local parameter of the model given a current model and a minibatch of points 

coming from the input stream and output a prediction 

2. how to merge two models 

3. how to update the model given the true target vector for a given point 

 

To have this high-level interface, we need to obtain a holistic view on the overall set of operations we want to 

perform on the data stream(s). To this end, we extended the language developed in T3.3 and its underlying 

Intermediate Representation (IR) to support operations among streaming matrixes and translate the execution 

flow in a streaming execution plan with feedback loops. This introduces a secondary challenge that we had to 

solve in this deliverable, i.e., generating the user defined functions given an arbitrary linear combination of 

streaming matrixes. Consider the following formula, which is a common subexpression present in any General 

Linear Model: 

𝑥 ∗ 𝑊 − 𝑦 

where x is a matrix of size (n, m), W is a matrix of size (m, p), y is a matrix of size (n, p), * is the matrix 

multiplication operator, and - is the subtraction operator among two matrixes of equal size. We model each 

matrix as a streaming matrix that are ingested asynchronously in our processing engine. The system receives 

the matrix as a stream of rows of size m and triggers the computation only when n rows have been ingested. 

Therefore, we assume we want to perform the above operations when we receive n new rows for each of the 

two streaming matrixes x and y. A straightforward way to implement this in an execution engine such as 

Apache Flink is to use 2 count-window operations to materialize the n new items and then connect the stream 

of count-windows coming from input x to the stream of count-windows coming from the streaming matrix W. 

Then, perform a matrix multiplication within a coFlatMap and then connect the stream containing the result of 

the coFlatMap to the one containing the materialized count-window of the streaming matrix y. Then, compute 

the subtraction using the intermediate values and the last n items coming from y. 
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Figure 1 Simple execution plan for X * W – Y. 

    

The problem with this approach is that it requires at least 2p threads for the window operators (with p being 

the parallelism of the window operators) and 2q threads for the coFlatMaps (with q the parallelism of the 

coFlatMap operator). As we cannot omit the window operators, a potential optimization is to union the three 

streams and perform the multiplication and the subtraction in a single flatMap operator, which runs with 

parallelism of p. The challenge with this approach is to detect a pattern as operand1 * operand2 + operand3 

and generate specialized code for the flatMap operator containing the fused math operations.  

To detect those types of patterns, we leverage our Intermediate Representation format to holistically inspect 

the user code. Our Intermediate Representation allows for pattern matching and by exploiting such feature, our 

PROTEUS optimizer can fuse the three math operators into a single Flink flatMap operators.  

 

 

Figure 2 Optimized execution plan for X * W – Y.  
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4 Conclusions 

In this document, we presented a first prototype of  the PROTEUS optimizer. The main feature of this optimizer 

is to holistically optimize a logical execution plan containing linear algebra operators performing matrix 

operations on streams. The proposed optimizer is able to perform Product Sum optimizations by means of 

operator fusing. This leads to better resource utilization as the underlying engine will have to schedule less 

physical operators. 

As future work, which we will carry out in D3.11, we plan to benchmark the capabilities of the PROTEUS 

optimizer by using it on one of the algorithm provided by WP4. 

 

The code of the optimizer is available on the PROTEUS Github page at the following address: 

https://github.com/proteus-h2020/streaming-lara 

 



PROTEUS Deliverable D3.10 

687691 Page 18 of 18 

  

 

References 

[1] A Catalog of Stream Processing Optimizations, Hirzel et al., ACM Computing Surveys, 2014 

[2] On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML, Hirzel et al., 

CoRR,abs/1801.00829, 2018  

[3] SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs, Boehm et al., 

IEEE Data Eng. Bull. 37(3), 2014 

[4] SPOOF: Sum-Product Optimization and Operator Fusion for Large-Scale Machine Learning, Elgamal 

et. al, CIDR, 2017 

 


	Executive summary
	Document Information
	Table of Contents
	List of figures and/or list of tables
	1 Introduction
	2 Background
	2.1 Common Streaming Optimizations
	2.2 Machine Learning Optimizations

	3 The PROTEUS Optimizer
	3.1 Compilers and Optimizers to the Rescue

	4 Conclusions
	References

