
 

 

 

 

 

PROTEUS 
Scalable online machine learning for predictive analytics and real-time 

interactive visualization 

687691 

 

 

D4.2 Basic Scalable Streaming 

Algorithms 
Lead Author: Hamid Bouchachia  

With contributions from: Waqas Jamil, Wenjuan Wang 
Reviewer: [Expert chosen by the responsible for the deliverable] 

 
 

 

Deliverable nature: Report (R) + Software   

Dissemination level: 
(Confidentiality) 

Public (PU)  

Contractual delivery date: November 30
th

 2016 

Actual delivery date: November 30
th

 2016 

Version: 0.5 

Total number of pages: 25 

Keywords: Basic online and streaming algorithms, preprocessing, Reservoir 

sampling, frequent directions, principal components analysis, singular 

value decomposition, random projection, moving average, aggregation 

algorithm.     



PROTEUS Deliverable D4.1.1 

687691 Page 2 of 30 

  

 

 

 

 

  



Deliverable D4.1.1 PROTEUS 

687691 Page 3 of 30  

Abstract 

The present report describes a set of selected algorithms for basic processing of big data, in particular for 

data streams. They pertain to different classes of techniques: data sampling, feature reduction, compression 

and various statistical moments. The proposed algorithms are basic ones that can be used for various 

analytics purposes (classification, clustering, regression). They can be used online in real-time and can be 

implemented on a distributed platform to meet the scalability requirements. 

Each class includes a number of algorithms. In particular, the report explains the purpose, the algorithmic 

steps and the distributed implementation of each algorithm.         
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Executive summary  

This report describes the first version of SOLMA, the library of scalable streaming algorithms for 

predictive analytics and automatic knowledge discovery from big data. This version is expected to 

include basic stream sketches that enable to query the stream (statistic moments, heavy hitters, 

sampling, and feature reduction) anytime. The current state-of-the- art streaming algorithms for big 

data do not offer such diverse basic algorithms that will potentially represent routines/utilities in the 

library.       

 

The report presents in particular a set of algorithms that can be categorized into the following: 

 Moments:   7 basic as well as advanced routines are proposed: simple mean, simple 

variance, weighted mean, weighted variance, exponentially weighted mean and variance, 

moving average, aggregation algorithm.  

 Sampling: 3 stream sampling algorithms are proposed. All of them are based on the popular 

reservoir sampling.    

 Heavy hitters: one algorithm, the frequent directions algorithm, is implemented  

 Feature reduction: 3 algorithms are presented: principal analysis, singular value 

decomposition and random projection 

 

All algorithms are described in an accessible way providing details about: 

 Purpose of the algorithm 

 Algorithmic steps 

 Distributed implementation  

 

Currently we are still investigating matrix sketching, online SVD, random projection ensemble 

classification and random projection ensemble clustering for data streams. SOLMA will be even 

richer in terms of basic scalable streaming algorithms. 
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1. Introduction 

Although, online learning algorithms are tightly related to primitives that operate in an incremental 

way accommodating data streams, there are not many machine libraries that offer such primitives.  

Sketching technique is an appealing technique that allows producing summaries of the streaming 

data. Sketching is relevant to different tasks such as sampling, histograms, multi-resolution models 

(wavelets, transformations) and frequent items (itemsets, patterns). Transformations are often useful 

for other types of tasks such as feature reduction and reduction. Many known sketches are linear 

(based on some linear transformations) are: frequent items, norms, quantiles, histograms, random 

subset sums, different counting sketches, Bloom filters, etc.      

Sketching is used to compute different types of frequency statistics [1, 11]. Such statistics are 

designed to provide inherent characteristics of the data. They may take the form of summaries that 

serve to approximate the information content of the data.  The performance of some standard 

sketches algorithms using hashing has been reviewed in [31].  

 

The main challenge for parallel computation is the size of the data, that is, when it is large and of 

the same order of magnitude as the time series, may lead the computation may be quadratic in the 

size of the series. 

 

More advanced sketching techniques are those we encounter in typical machine learning algorithms 

and these are the ones we have considered and we will further investigate along the lifetime of 

PROTEUS. Sketches are useful for online machine learning algorithms as they allow computing the 

main elements of such algorithms in a recursive manner, thus avoiding storing and revisiting any 

data in the future. 

 

Indeed, Online learning (OL) especially for data streams takes place over long periods of time, and 

is inherently open-ended. The aim is to ensure that the system remains amenable to refinement as 

long as data continue to arrive. It is interesting to note that online learning can also deal with 

applications starving of data (e.g., experiments that are expensive and slow to produce data as in 

some chemical and biological applications) as well as with applications that are data intensive (e.g., 

monitoring, information filtering, etc.). 

 

OL faces the challenge of accurately estimating the statistical characteristics of data in the future. In 

non-stationary changing environments, the challenge becomes even more important, since the 

system’s behaviour may need to change drastically over time due to concept drift. The aim of OL is 

to ensure continuous adaptation, while storing only the learning model that will be used as basis in 

the future learning steps. As new data arrive, new memories may be created and existing ones may 

be modified allowing the system to evolve over time. For these reasons, sketches and summaries are 

quite appealing to consider as part of any online machine learning library like SOLMA. 

 

In this document we report on a number of classes of techniques: sampling, moments, matrix 

sketching and feature reduction. Specifically, for the first class we will present discuss 3 algorithms 

based on the reservoir sampling technique. We also provide the implementation of 7 standard online 

moments. The third class includes one novel technique, called Frequent Directions (FD) a kind of 

heavy hitters. For the last class, we focus on online principal component analysis (OPCA) and 

singular value decomposition (SVD) and random projection. We show also how these basic 

algorithms can be implemented on a distributed platform. These algorithms are accessible from the 

project GitHub website: https://github.com/proteus-h2020/SOLMA. It is worthwhile to mention 

that other algorithms will be added during the execution of PROTEUS.   

 

https://github.com/proteus-h2020/SOLMA
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1.1. Document objectives 

This document provides a brief description of basic scalable streaming algorithms that will be 

integrated in the SOLMA library. In particular we will describe and provide the generic steps of 

some of the selected algorithms: Online sampling, online FD, online moments, online PCA, offline 

SVD and online random projection. 

 

1.2. Document structure 

The document consists mainly of 4 sections. Each section describes a set of selected algorithms 

from one of the classes: sampling, moments, heavy hitters, and feature reduction. 
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2. Reservoir sampling 

Sampling is an important technique for performing many approximation tasks such answering 

queries or developing machine learning models from a finite set of data input. It aims to derive a 

sample that can represent the whole population [6]. Random sampling is a basic sampling scheme. 

The principle is to have a same possibility for each stream item to be selected into the sample. It 

reduces human bias potential and obtains a sample that can highly represent the population. 

Assuming we have a set of size n, random sampling is to select without replacement a sample of 

size k. Many algorithms have been developed to solve problems with a known total size n [8, 26]. 

 

However, when it comes to data streams, the size n is unknown beforehand. Thus, the sampling rate 

cannot be determined. Besides, sampling should be processed sequentially since the items arrive in 

stream. The most classical approach is reservoir sampling [19, 22, 27]. With this algorithm, the 

probability of each item selected into a fixed-size reservoir is equal. The algorithm maintains a 

random sample of size s without replacement over a stream. It is initialized with the first s elements; 

when the i-th element arrives for i > s, with probability 1/i the model adds the new element, and 

replaces replacing an element uniformly chosen from the current sample. There have been various 

extensions to the basic reservoir sampling algorithm.  

 

It has been applied in many applications, for example, clustering [18, 12], spatial data management 

[25], etc. However, there are applications that need to adjust the reservoir size [2]. In this case, 

adaptive-size reservoir sampling can be applied. In some other applications, the stream items are 

assigned weights. Two weighted reservoir sampling algorithms [7, 5] are proposed for this 

situation.  

 

In this project, reservoir sampling, adaptive reservoir sampling and two weighted reservoir 

sampling algorithms are implemented. In the following a short description of each algorithm is 

given. 

2.1. Reservoir Sampling 

The algorithm selects a random sample with a fixed size Ὧ without replacement from a data stream 

of an unknown size ὲ. Initially, it places the first Ὧ items from the stream into the reservoir. Then, it 

iterates with each arriving item until the steam is exhausted. For the Ὥth item Ὓ, the algorithm 

generates a random number Ὦ from 0 to Ὥ. If Ὦ is less than or equal to Ὧ, the Ὦth item in the reservoir 

is replaced with the Ὓ. The probability of any item shown in the final reservoir is equal, i.e. ὯȾὲ. 

The time complexity of reservoir sampling is ὕὲ. The algorithm is presented as follows:  

 
Algorithm  1: Reservoir  sampling  
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2.2. Adaptive Reservoir Sampling 

With reservoir sampling, one obtains a fixed size sample. However, it is better to adjust the 

reservoir size in the middle of sampling in some applications; for instance, data collection over 

wireless sensor networks, approximate query processing, etc. [2] proposed an algorithm called 

adaptive reservoir sampling which maintains the reservoir sample after the size is adjusted. It is 

proven that, when the reservoir size decreases, the algorithm generates a sample in the reduced 

reservoir with a 100% uniformity confidence (UC), defined in [2]. This means each item in the 

reduced reservoir has an equal probability of being selected from the stream. In contrast, when the 

reservoir size is increased, the enlarged reservoir cannot be maintained with a 100% uniformity 

confidence. 

 

The adaptive reservoir sampling algorithm is shown below. If the reservoir size does not change, 

reservoir sampling is used. If the reservoir size decreases by , the algorithm discards  items from 

the original reservoir and then continues. In contrast, if the reservoir size increases by , the 

algorithm computes the minimum value of m (defined as the number of incoming items used to fill 

the enlarged reservoir) that causes the uniformity confidence to exceed a given threshold . 

Afterwards, it flips a biased coin to decide on how many items x are retained among the k items in 

the original reservoir. k-x items are randomly discarded from the original reservoir. The enlarged 

reservoir is refilled with k+-x items from the arriving m items.  
 

Algorithm  2: Adaptive  reservoir  sampling  

 
 

2.3. Weighted Reservoir Sampling 

Weighted random sampling is used in cases where items are assigned with weights. The probability 

of each item being selected is determined by its weight. There are at least two ways to interpret 

naturally the item weights. The first interpretation is that the probability of being selected is 

determined by the weight of each item. The other one is that the probability of the item being in the 

final sample is determined by the relative weight of each item.  

 

In the case of data streams, there are algorithms for both interpretations. Algorithm 3 proposed by 

in [7] applies the first interpretation. It is given as follows: 
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Algorithm  3: Weighted  random  sampling  (A-RES) 

 
 

The key Ὧ of stream item Ὓ in the population is calculated as Ὧ ό
Ⱦ

 with a uniform random 

number ό ὶὥὲὨέάπȟρ. Firstly, the algorithm keeps the first ά items in the reservoir and 

calculates their key. If the key of the new arriving item is larger than the minimum key in 

thereservoir, the minimum key item is replaced by the new arriving one. This step is repeated until 

the data stream is exhausted.  

 

For the second weight interpretation, Chao [5] proposed an algorithm called Algorithm A-Chao. 

Initially, it fills the reservoir with the first ά stream items. Then it calculates the relative weight of 

the new arriving item. This value is used to randomly decide if a uniformly selected item in the 

reservoir should be replaced by this new item. The algorithm is shown in Algorithm 4.  

 
Algorithm  4: Weighted  random  sampling  (A-Chao)  

 
 

2.4. Distributed Reservoir Sampling 

To cope with high speed streams, a distributed approach needs to be taken. One natural way of 

implementing distributed stream sampling algorithms is a kind of stratification [2]. Sub-samples are 

computed on different distributed machines before they are combined at the level of a master 
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machine. This is the approach we are following in this research. The stream is processed window by 

window, where each window is sampled by a machine using a selected reservoir sampling 

algorithm. The outcome on each machine is sent to the master machine which applies reservoir 

sampling to produce a final sample. Another possibility consists of simply merging the output 

reservoirs, but this solution is not scalable. Figures 1 and 2 show both possibilities. 

 

Figure  1: 2-stage  distributed  reservoir  sampling  
 
 
 

 
 

Figure  2: 1-stage  distributed  reservoir  sampling  
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3. Frequent directions 

Low rank approximations for large matrices are used in different data mining tasks such as 

Principal Component Analysis (PCA), Latent Semantic Indexing (LSI), and k-means clustering 

[10]. There are very few techniques based on sketching to implement low rank approximation for 

streaming data (assuming that data is seen as a growing matrix). One new technique used for low-

rank approximation is Frequent Directions (FD).  

 

The Frequent Directions algorithm is an extension of the Misra-Gries Frequent Items algorithm [23] 

for estimating counts of items in streaming data. To show the connection, we begin by briefly 

reviewing the Frequent Items algorithm before describing the Frequent Directions algorithm. 

Frequent Directions is a conceptually-simple, deterministic algorithm that is optimal with respect to 

sketch size and resulting accuracy (but not to run time). The algorithm is a deterministic algorithm 

(row/column update) which outperforms other available options in terms of space-error trade-off, 

for results see [10]. 

 

The goal of FD is to sketch a matrix B that is significantly smaller than the original A while this 

later is continuously updated with new data items. That is, given an arbitrary input matrix, AR
n×d

, 

one row at a time; FD maintains a sketch matrix B R
ℓ×d

 such that k<n. A good sketch matrix B is 

such that ὃ ὄ έὶ equivalently ὃὃ ὄὄ . Using such sketch, many operations on matrices can 

be efficiently computed. The FD algorithm achieves this goal by the guarantee:ȿȿὃὃ ὄὄȿȿ
‭ȿȿὃȿȿ. The proof is unsurprisingly very similar to the frequent items proof. There are various 

implementations available of this algorithm; the one we implemented is as follows:  
Algorithm  5: Frequent  directions  

 
 

This algorithm has room for improvement, in terms of time and storage space. Most of the time is 

taken by the Singular-Value-Decomposition (SVD) which is calculated once every iteration and 

therefore the total running time is bounded by O(nml). This gives an amortized update time of 

O(ml) per row. 

 

In order to implement FD on a distributed platform, as described in [10], the input can be 

distributed among several machines, where each machine produces a summary. The FD outcome of 

all machines can be then combined in a straightforward way. For an input A = [A1;A2;é;Ap] ,  

where Aj is a sequence of input (batch) and without loss of generality let Bj be the FD outcome of 
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Aj. Then thanks to the property of mergeable summary [Agarwal et al., 2013], the output is simply 

the combination B = [B1;B2;é;Bp] . 

 

 
 

         Figure  3: Distributed  FD 
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4. Moments 

Basic moments for streaming are provided. These can be used when developing online algorithms 

or simply showing basic statistics of the data flow.  The code is available at: 

https://github.com/proteus-h2020/proteus-backend/blob/master/proteus-

examples/src/main/java/com/treelogic/proteus/examples/AverageExample.java. This will be 

however enriched with further moments during the course of the project.    

4.1. Simple Mean 

The mean of n data points is given as: 

 ‘
ρ

ὲ
ὼ

ρ

ὲ
ὼ ὼ  (1) 

By simple manipulation we can compute the mean recursively to obtain: 

 ‘
ὲ ρ

ὲ
‘

ρ

ὲ
ὼ (2) 

 

To compute the mean in parallel, given two datasets A and B whose means are computed on two 

machines, the following formula can be used to compute the overall mean: 

 

                                                          ‘ ‘ ‘                                 (3) 

 

4.2. Simple Variance 

The variance of n data points is given by  

 „
ρ

ὲ
ὼ ‘

ρ

ὲ
ὼ ςὼ‘ ‘  (4) 

Using basic algebraic manipulation we get:  

 „
ρ

ὲ
ὼ

ρ

ὲ
ὼ  (5) 

 

It is easy to show that  

                                            „ „ ὼ ‘                                                (6) 

 

To implement this in parallel given two datasets A and B, we use the quantity ὓ В ὼᶰ

‘ὃ)2 s.t. „ὲ2= 1ὲ 1ὓὃ), then:   

                                           ὓ ᷾ ὓ ὓ ‘ ‘ ὲὲȾὲ                                    (7) 

 

Similarly, the covariance can be obtained as follows: 

 

                                           ὅ ȟ ὅ
ȟ

ὼ ‘ ώ ‘                                     (8)   

 

https://github.com/proteus-h2020/proteus-backend/blob/master/proteus-examples/src/main/java/com/treelogic/proteus/examples/AverageExample.java
https://github.com/proteus-h2020/proteus-backend/blob/master/proteus-examples/src/main/java/com/treelogic/proteus/examples/AverageExample.java
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To compute the covariance in a distributed way, we use the quantities ὅ ȟ В ὼ ‘ ώ

‘   and ὅ ȟ В ὼ ‘ ώ ‘ the co-moments matrices of two datasets A and B 

computed possibly on two machines, the combination is given by the following formula: 

 

                                        ὅ᷾
ȟ ὅ ȟ ὅ ȟ ‘ ‘ ‘ ‘ ὲὲȾὲ                        (9) 

 

The unbiased estimator of the covariance is obtained as ὅέὺὼȟώ ὅ᷾
ȟ

 

4.3. Weighted Mean 

Let the weighted mean for n samples defined as follows:  

 ‘
В ύὼ

В ύ
 (10) 

It is equivalent to the simple mean when all the weights are equal, however when the weights are 

not equal, weights can be thought of sample frequencies, or they can be used to calculate 

probabilities. Each weight can be normalised, that is divided by the sum of weights (ὡ ). By doing 

some basic manipulation we can write the weighted mean as:  

 ‘ ὡ ‘
ύ

ὡ
ὼ (11) 

Like in Eq. 3, the distributed computation of two weighted means is given as:   

 

                                                          ‘ ‘ ‘                                                   

(12) 

where  ὡ В ύᶰ  and ὡ В ύᶰ  

 

4.4. Weighted Variance 

We follow similar arguments used in the simple variance case with a slight modification, this time:  

 „
ρ

ὡ
ύ ὼ ‘

ρ

ὡ
ύὼ ‘ (13) 

 

Let  Ὓ ὡ„ , where ὡ В ύ. Then we can obtain the following recursive formula: 

  

 Ὓ Ὓ ύ ὼ ‘ ὼ ‘  (14) 

 

We get on-line equation for variance:  

 „
Ὓ

ὡ
 (15) 

The distributed version can be computed in a similar way as in Eq. 9. 
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4.5. Exponentially Weighted Mean and Variance 

Here we state a more useful scenario for data streams, we state few equations to calculate 

exponentially weighted mean and variance. The standard formula for exponentially weighted 

moving average is:  

 

 ‘ ‌‘ ρ ‌ὼ (16) 

 

where π ‌ ρ, and we use the lower bound of π rather than ρ for convenience. We have on-line 

version as:  

 ‘ ‌ὼ ρ ‌ὼ (17) 

We can write down the weights directly, since they’re independent of ὲ and by summing geometric 

series we have the following:  

 ὡ ύȟ ύȟ ‌ ρ ‌ ρ (18) 

Similarly for variance we have Ὓ ὲ„ , then we can derive:  

 

 Ὓ ρ ‌Ὓ ‌ὼ ‘ ὼ ‘  (19) 

and variance is:  

 „
Ὓ

ὡ
Ὓ ρ ‌ Ὓ ‌ὼ ‘  (20) 

 

4.6. Moving Average 

Moving average is a process where the observation at step t  linearly depends on some observations 

of a white noise sequence. Formally, this can be expressed: 

 

 qtqtqtt ZZZX    ...= 1    (21) 

 where tZ  is white noise with zero mean and 2  as variance and 0,...,1 q  are constants. 

 

Often to approximate exponentially weighted average, for instance in the area of financial time 

series [32], Kalman filtering is used. Moreover, Kalman filter is the only equivalent to 

exponentially moving average for the case of random walk with noise [14]. Hence, when dealing 

with time series, kalman filters can be of extreme use. 

 

Interestingly enough, we only require to focus on the innovation step of Kalman filter, as the 

problem in hand is to fit a moving average model to the observation nxx ,...1  with parameter q  such that 

the mean squared distance between the set of observations is minimum. Note that the innovation in 

Kalman filter is defined as the difference between the observation and its prediction. We adopt the 

algorithm proposed in [34] shown in Algorithm 6 below to implement moving average.  

 

Algorithm 6: Moving  average  (Innovation  Algorithm)  
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Such algorithm is a typical example of how to have a recursive prediction, but it does not qualify as 

competitive on-line statistics algorithm
1
, there is no (mention on) guarantee of the bounds. Recently 

there have been two advances in on-line learning of ARMA [3] and ARIMA [21]. These two 

algorithms will be implemented and integrated into SOLMA as well.  

 

4.7. Aggregation Algorithm 

Aggregation algorithm (AA) [28] is a typical online learning algorithm that operates as an 

ensemble. AA is used mainly for competitive online prediction, where the goal is merging 

predictions of a number of experts. On-line learning consists of learning a sequentially presented set 

of training data upon arrival, without re-examining data that has been processed so far. In general 

on-line learning is practical for applications where the data set is large and cannot be processed at 

once due to memory constraints. Practically an on-line learner receives a new data instance, along 

with current hypothesis, checks if the data instance is covered by the current hypothesis and updates 

the hypothesis accordingly. The protocol of on-line learning can be summarized as follows: the 

learner receives an observation; the learner makes a decision; the learner receives the ground truth; 

learner incurs the loss and updates its hypothesis. The learning process is based on the minimisation 

of the loss (regret) which corresponds to the discrepancy between the loss and the loss of the best 

expert in hindsight. 

 

The AA algorithm stands as a generalisation of the popular Weighted Majority algorithm [20]. It 

provides a weighted average that has bounds in the case of mixable game. In order to see the 

algorithm applied on brier game or for time series, please refer to [29] and [16] respectively. 

 

In this section we provide the algorithmic details of AA and we show how it can be implemented in 

a distributed fashion for handling data streams. Aggregation algorithm is a typical example, which 

uses concept of weighted average and the exponential weighted average. However it goes one step 

beyond, that it provides an average that has bounds, in the case of mixable game. 

  

Let Ω be an outcome space, Γ be a prediction space and Θ be a (possibly infinite) set of experts. 

The learning process of AA can be seen as a game between a learner, experts and nature:  

For any input at time t 

                                                 
1
 An online algorithm is competitive, if the ratio between that algorithm and its optimal batch leaning counterpart is 

bounded. 
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- Every expert θ  ˥Θ makes a prediction ‎  ɴɜ 

- Learner L observes all predictions ‎  

- Learner L outputs a prediction ‎ᶰɜ 
- Nature outputs ‫  ɴɱ 

- Learner suffers a loss ‗‎ȟ‫   
 

The loss of AA cannot be much larger than the best expert for a mixable finite experts game while 

uniformly initialising the prior weights of the experts: 

 ὒέίίὃὃ ὒέίί —
ὰέὫ ὔ

–
 (22) 

where —ᶰɡ, – is the learning rate, and ὔ is the number of experts. This bound ςς is shown [30] 

to be optimal in a very strong sense, meaning that it cannot be improved by any other prediction 

algorithm. The pseudo-code is as follows [30]:  
Algorithm  7: Aggregation  algorithm  

 
 

AA can be applied to achieve desired objectives such as weighted average. AA is quite appealing 

when mixing different methods but also for its easy implementation in distributed fashion. 

 

Figure  4: Distributed  version  of  the aggregation  algorithm  
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5. Feature Reduction 

5.1. Online PCA 

Principal component Analysis (PCA) is a popular approach for dimensionality reduction. Suppose 

we have a random vector ),...,(= 1 iXXX , with a population variance-covariance matrix  , then 

we can consider the following linear equation:  

                               iiiiii XeXeXeY  ...= 2211      (23) 

We can plug in values of i  and obtain different equation which can be thought of linear regression, 

predicting iY  from iXX ,...,1  with no intercept. ipi ee ,...1  can be thought of as regression coefficients. 

We select these coefficients that maximise:  

                                          klilik

p

l

p

k

i eeYvar 
1=1=

=)(   (24) 

where kl  denotes the k th row and l th column in  . The main constraints added are that the 

sum of squared of coefficients adds to 1 and that the new component will be uncorrelated with all 

previously defined components. Hence:  

                         0==),( 1,

1=1=

1 klilki

p

l

p

k

ii eeYYcov     (25) 

Formally the problem can be defined as given ndX R , minimise over dkY R  where dk < :  

                         2

2

2 |||||||| YXminorYXmin F     (26) 
 

In batch learning by just considering the top left singular vectors of the covariance matrix and 

projecting them gives the optimal solution for both norms. More formally if kU  is the span of the 

top k  left singular vectors of X , then XUY k

=  and kU=  represents the optimal solution.  

 

The few attempts that have been made to solve this problem in on-line setting do not provide the 

same solution for both norms. For instance, [4] provides bounds for Frobenius norm, while [17] 

provides spectral bounds. In [4] two algorithms are presented. The first algorithm requires 

Frobenius norm of X  as input which makes it unrealistic for on-line setting. The second algorithm 
uses Frequent Directions and does not impose the Frobenius norm of X as input.  
 

In [17], two algorithms are discussed. The first algorithm is space efficient, while the second one is 

time efficient. Both algorithms seem comparatively more practical. In this deliverable, we have 

considered the space-efficient version, as it is conceptually easier to understand and serves as basis 

for the time-efficient one. Unfortunately none of the papers gives empirical evidence for any of 

these algorithms.  Thus, this report provides the first attempt to  implement it.  
Algorithm  8: Online  PCA 
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The algorithm starts with an empty projection matrix U  and then adds singular vectors until some 

pre-specified value of   is achieved. The second matrix used by the algorithm is B  which is 

initialised using some sketching technique like Frequent Directions. 

 

In order to implement online PCA in a distributed way, we may rely on two possibilities:  

 

a- Merging the eigenspace models: the models can be merged using the approach developed in 

[Hall et al. ] which shows how eigenspace models can be combined. For the sake of 

illustration, we consider two models computed by two different machines in parallel: 

ɱ ‘ȟὟ ȟɤ ȟὔ  and ɰ ’ȟὠ ȟɝ ȟὓ  where ‘ and ’indicate the mean of the 

datasets, Ὗ  and ὠ  are the eigenvectors, ɤ  and ɝ  are the eigenvalues and ὔ and  ὓ 

are the size of the datasets of the two models. The combination results in a new model: 

ɮ ᾀȟὡ ȟɩ ȟὖ. The merge is done using Algorithm 9 below. 

 

b- A more efficient alternative to implement OPCA in distributed fashion is to distribute data 

sample by sample on the existing machine. Each machine will run the optimization problem 

in parallel to compute Ui and Bi. Then the top left singular vector, Ti, is returned. These 

vectors are then concatenated to provide U which will sent to all machine to project the 

original input to produce the low-dimensional input yi. Figure 5 illustrates the process.  

 

 
 

Figure  5: Distributed  version  of  OPCA 
 

Algorithm  9: Combining  eigenspace  models  
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5.2. Singular Value Decomposition 

One of the most important aspect of stream processing is the time complexity of the algorithms. 

SVD is used everywhere, we provide a faster SVD algorithm. A lot of Machine Learning textbooks 

focusses on the Mahalonbis Distance, but in practice it is better to use penalised version. It is 

generally recommended to smooth the covariance matrix first and than compute its inverse. The 

reason behind this warning is to avoid the calculation of SVD, because the inverse entail a division 

by the covariance matrix singular values. When the input features are correlated you will get some 

singular values close to 0 . So when computing the inverse of the covariance matrix you will divide 

by a very small number. This will make some of the newly derived features very large. This is 

unwanted since those features have the least use for machine learning purposes. 

 

The un-centred covariance is calculated by using XX 
, if one need the centred version then we 

want to accomplish 1)(   IXX , let ,..., 21 ss  be our singular values of X , by replacing X  with 

its SVD( VU ) and and applying Woodbury idenity [17], we get:  

 













 V

s

s
VdiagXX




2

1

2

11)( I  (27) 

 

The formula avoids division by a small number, furthermore, important features are shrunk less in 

comparison to other features. The whole process can be summarised as follows:   
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1. Compute XX    

2.  Compute SVD( XX  ) )=(== 22 SDVDVVVS  . Step 1 and 2  are in the case you don’t have 

a solver for SVD of large matrices  

3.  Take the first top k  singular values. Those are 22

11 =,...,= kk sdsd   

4.  Compute the transformed features: 














 i

i

trans
d

d
VdiagX =   

5.  Compute the Euclidean distance using the transformed features. 

 

5.3. Random Projection 

Random projection (RP) [9] is a technique that has found substantial use in the area of algorithm 

design (especially approximation algorithms), by allowing one to substantially reduce 

dimensionality of a problem while still retaining a significant degree of problem structure. In 

particular, given N points in n-dimensional Euclidean space, we can project these points down to a 

random p-dimensional subspace for p  n. 

 

Let ὢ ὼᶰὙȿὭ ρȣὔ  be the input vectors in an n-dimensional space. RP embeds these 

vectors into a lower dimensional space Ὑ  where ὴḺὲ: ὼᶰὙ  m ώᶰὙ . The set ὣ ώᶰ

Ὑ Ὥ᷆ ρȟὔ  are called the embedding vectors.  

 

To do this, a set of random vectors are generated ὓ ὶᶰὙȿὯ ρȟὲ. ὶ’s are either generated 

uniformly over the p-dimensional unit space or chosen from a Bernoulli +1/-1 distribution and the 

vectors are normalized so that ||ὶȿȿ ȟὯ ρȟὲȢ  The obtained matrix ὓ ɴ Ὑ  is used to compute 

the embedding ώ of ὼ as follows: ώ ὓὼ. 

 

The distributed version of RP is straight forward. All needed is to replicate the random matrix over 

the machines that compute the projected data.   

 

Note this work is currently being dveloped for a more ambitious setting namely random projection 

ensemble classification and random projection ensemble clustering for data streams. 
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6. Conclusions 

The present document describes a set of basic streaming algorithms. We do not make any 

distinction between “online” and “streaming” as they fit both purposes. For each algorithm, we 

provided few details that allow the reader to understand the: purpose, the algorithmic steps, and the 

distributed implementation. The proposed algorithms were selected in a way to reflect on the 

different aspects related to big data, both data-at-rest and data-in-motion. We, in particular, focused 

on: sampling (4 algorithms), feature reduction (3 algorithms), compression (1 algorithm), and 

moments (5 simple ones and 2 algorithms).  It is important to note that other basic algorithm will be 

included in SOLMA as we move into advanced algorithms. All algorithms are available on Github 

(https://github.com/proteus-h2020/SOLMA). 

Currently we are still investigating matrix sketching, online SVD, random projection ensemble 

classification and random projection ensemble clustering for data streams. SOLMA will even richer 

in terms of basic scalable streaming algorithms. 

  

https://github.com/proteus-h2020/SOLMA
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